BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36830150)

  • 1. Raspberry Ketone-Mediated Inhibition of Biofilm Formation in
    Farha AK; Sui Z; Corke H
    Antibiotics (Basel); 2023 Jan; 12(2):. PubMed ID: 36830150
    [No Abstract]   [Full Text] [Related]  

  • 2. The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium.
    Sharma N; Das A; Raja P; Marathe SA
    Microbiol Spectr; 2022 Jun; 10(3):e0020222. PubMed ID: 35678575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm.
    Baugh S; Ekanayaka AS; Piddock LJ; Webber MA
    J Antimicrob Chemother; 2012 Oct; 67(10):2409-17. PubMed ID: 22733653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Determinants of
    Griewisch KF; Pierce JG; Elfenbein JR
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium.
    Ahmad I; Rouf SF; Sun L; Cimdins A; Shafeeq S; Le Guyon S; Schottkowski M; Rhen M; Römling U
    Microb Cell Fact; 2016 Oct; 15(1):177. PubMed ID: 27756305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in
    Paytubi S; Cansado C; Madrid C; Balsalobre C
    Front Microbiol; 2017; 8():2160. PubMed ID: 29163440
    [No Abstract]   [Full Text] [Related]  

  • 7. Clarithromycin Exerts an Antibiofilm Effect against
    Zafar M; Jahan H; Shafeeq S; Nimtz M; Jänsch L; Römling U; Choudhary MI
    Infect Immun; 2020 Oct; 88(11):. PubMed ID: 32839186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into coumarin-mediated inhibition of biofilm formation in
    Thakur S; Ray S; Jhunjhunwala S; Nandi D
    Biofouling; 2020 Apr; 36(4):479-491. PubMed ID: 32546074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulatory control of curli (csg) gene expression in Salmonella enterica serovar Typhi requires more than a functional CsgD regulator.
    Ou C; Dozois CM; Daigle F
    Sci Rep; 2023 Sep; 13(1):14905. PubMed ID: 37689734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.
    Schlisselberg DB; Kler E; Kisluk G; Shachar D; Yaron S
    Int J Antimicrob Agents; 2015 Oct; 46(4):456-9. PubMed ID: 26260191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium.
    Shen C; Islam MT; Masuda Y; Honjoh KI; Miyamoto T
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5427-5436. PubMed ID: 32307570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources.
    Solomon EB; Niemira BA; Sapers GM; Annous BA
    J Food Prot; 2005 May; 68(5):906-12. PubMed ID: 15895720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of
    Naz F; Ahmad A; Sarwar Y; Khan MM; Schierack P; Rauf W; Ali A
    Foodborne Pathog Dis; 2024 Jan; 21(1):52-60. PubMed ID: 37819687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Sharing the matrix" - a cooperative strategy for survival in Salmonella enterica serovar Typhimurium.
    R KB; S SC; N SS
    BMC Microbiol; 2023 Aug; 23(1):230. PubMed ID: 37612630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-inhibitory concentrations of cefotaxime treatment enhances biofilm formation of monophasic Salmonella Typhimurium variant strain SH16SP46.
    Zhang X; Wang M; Bao X; Li P; Cui A; Meng X; Huang Q; Li S
    FEMS Microbiol Lett; 2022 Oct; 369(1):. PubMed ID: 36089570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation.
    Malcova M; Hradecka H; Karpiskova R; Rychlik I
    Vet Microbiol; 2008 Jun; 129(3-4):360-6. PubMed ID: 18242887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate Is an Environmental Cue in the Gut for Salmonella enterica Serovar Typhimurium Biofilm Dispersal through Curli Repression and Flagellum Activation via Cyclic-di-GMP Signaling.
    Miller AL; Nicastro LK; Bessho S; Grando K; White AP; Zhang Y; Queisser G; Buttaro BA; Tükel Ç
    mBio; 2021 Feb; 13(1):e0288621. PubMed ID: 35130730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms.
    Zhou Y; Smith D; Leong BJ; Brännström K; Almqvist F; Chapman MR
    J Biol Chem; 2012 Oct; 287(42):35092-35103. PubMed ID: 22891247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flagellar Motility Is Critical for
    Wang F; Deng L; Huang F; Wang Z; Lu Q; Xu C
    Front Microbiol; 2020; 11():1695. PubMed ID: 33013719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy.
    Jonas K; Tomenius H; Kader A; Normark S; Römling U; Belova LM; Melefors O
    BMC Microbiol; 2007 Jul; 7():70. PubMed ID: 17650335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.