BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36830756)

  • 1. Using GPT-3 to Build a Lexicon of Drugs of Abuse Synonyms for Social Media Pharmacovigilance.
    Carpenter KA; Altman RB
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RedMed: Extending drug lexicons for social media applications.
    Lavertu A; Altman RB
    J Biomed Inform; 2019 Nov; 99():103307. PubMed ID: 31627020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging social networks for toxicovigilance.
    Chary M; Genes N; McKenzie A; Manini AF
    J Med Toxicol; 2013 Jun; 9(2):184-91. PubMed ID: 23619711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BERT-based language model for accurate drug adverse event extraction from social media: implementation, evaluation, and contributions to pharmacovigilance practices.
    Dong F; Guo W; Liu J; Patterson TA; Hong H
    Front Public Health; 2024; 12():1392180. PubMed ID: 38716250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferability Based on Drug Structure Similarity in the Automatic Classification of Noncompliant Drug Use on Social Media: Natural Language Processing Approach.
    Nishiyama T; Yada S; Wakamiya S; Hori S; Aramaki E
    J Med Internet Res; 2023 May; 25():e44870. PubMed ID: 37133915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter.
    Sarker A; Gonzalez-Hernandez G; Ruan Y; Perrone J
    JAMA Netw Open; 2019 Nov; 2(11):e1914672. PubMed ID: 31693125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering big data from social media--Building an early warning system for adverse drug reactions.
    Yang M; Kiang M; Shang W
    J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence-Enabled Social Media Analysis for Pharmacovigilance of COVID-19 Vaccinations in the United Kingdom: Observational Study.
    Hussain Z; Sheikh Z; Tahir A; Dashtipour K; Gogate M; Sheikh A; Hussain A
    JMIR Public Health Surveill; 2022 May; 8(5):e32543. PubMed ID: 35144240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Intelligent Context-Aware Machine-Learning Tool to Detect Adverse Drug Events from Social Media Platforms.
    Roosan D; Law AV; Roosan MR; Li Y
    J Med Toxicol; 2022 Oct; 18(4):311-320. PubMed ID: 36097239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing social media data for pharmacovigilance: A review.
    Sarker A; Ginn R; Nikfarjam A; O'Connor K; Smith K; Jayaraman S; Upadhaya T; Gonzalez G
    J Biomed Inform; 2015 Apr; 54():202-12. PubMed ID: 25720841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.
    Cocos A; Fiks AG; Masino AJ
    J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging digital media data for pharmacovigilance.
    Farooq H; Niaz JS; Fakhar S; Naveed H
    AMIA Annu Symp Proc; 2020; 2020():442-451. PubMed ID: 33936417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural networks ensemble for detecting medication mentions in tweets.
    Weissenbacher D; Sarker A; Klein A; O'Connor K; Magge A; Gonzalez-Hernandez G
    J Am Med Inform Assoc; 2019 Dec; 26(12):1618-1626. PubMed ID: 31562510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Public Perspectives of Using Social Media Data to Improve Adverse Drug Reaction Reporting: A Mixed-Methods Study.
    Bulcock A; Hassan L; Giles S; Sanders C; Nenadic G; Campbell S; Dixon W
    Drug Saf; 2021 May; 44(5):553-564. PubMed ID: 33582973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online Conversation Monitoring to Understand the Opioid Epidemic: Epidemiological Surveillance Study.
    Black JC; Margolin ZR; Olson RA; Dart RC
    JMIR Public Health Surveill; 2020 Jun; 6(2):e17073. PubMed ID: 32597786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adverse Drug Reaction Identification and Extraction in Social Media: A Scoping Review.
    Lardon J; Abdellaoui R; Bellet F; Asfari H; Souvignet J; Texier N; Jaulent MC; Beyens MN; Burgun A; Bousquet C
    J Med Internet Res; 2015 Jul; 17(7):e171. PubMed ID: 26163365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of Social Media in Detecting Drug Safety-Related New Black Box Warnings, Labeling Changes, or Withdrawals: Scoping Review.
    Lee JY; Lee YS; Kim DH; Lee HS; Yang BR; Kim MG
    JMIR Public Health Surveill; 2021 Jun; 7(6):e30137. PubMed ID: 34185021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Spanish health social media for detecting drug effects.
    Segura-Bedmar I; Martínez P; Revert R; Moreno-Schneider J
    BMC Med Inform Decis Mak; 2015; 15 Suppl 2(Suppl 2):S6. PubMed ID: 26100267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.