These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36831185)

  • 1. Cell Surface Charge Mapping Using a Microelectrode Array on ITO Substrate.
    Ouyang L; Shaik R; Xu R; Zhang G; Zhe J
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Surface Charge Distribution of Single-Cell via Charged Nanoparticle.
    Ouyang L; Shaik R; Xu R; Zhang G; Zhe J
    Cells; 2021 Jun; 10(6):. PubMed ID: 34208707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Surface Charge Mapping Based on a Liquid Crystal Microchip.
    Ouyang L; Chen H; Xu R; Shaik R; Zhang G; Zhe J
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges.
    Wu F; Zhou B; Wang J; Zhong M; Das A; Watkinson M; Hing K; Zhang DW; Krause S
    Anal Chem; 2019 May; 91(9):5896-5903. PubMed ID: 30986350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of Transparent, PEDOT:PSS Coated Indium-Tin-Oxide (ITO) Microelectrodes.
    Yang W; Broski A; Wu J; Fan QH; Li W
    IEEE Trans Nanotechnol; 2018 Jul; 17(4):701-704. PubMed ID: 30745860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording.
    Yang W; Gong Y; Yao CY; Shrestha M; Jia Y; Qiu Z; Fan QH; Weber A; Li W
    Lab Chip; 2021 Mar; 21(6):1096-1108. PubMed ID: 33522526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells.
    Ni L; Shaik R; Xu R; Zhang G; Zhe J
    ACS Sens; 2020 Feb; 5(2):527-534. PubMed ID: 31939290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures.
    Gross GW; Wen WY; Lin JW
    J Neurosci Methods; 1985; 15(3):243-52. PubMed ID: 4094480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell in Vitro Recordings.
    Ryynänen T; Mzezewa R; Meriläinen E; Hyvärinen T; Lekkala J; Narkilahti S; Kallio P
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32423145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning cells on optically transparent indium tin oxide electrodes.
    Shah S; Revzin A
    J Vis Exp; 2007; (7):259. PubMed ID: 18989431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film.
    Zheng F; Zhang P; Wang X; Huang W; Zhang J; Shen M; Dong W; Fang L; Bai Y; Shen X; Sun H; Hao J
    Nanoscale; 2014 Mar; 6(5):2915-21. PubMed ID: 24477668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy.
    Kisler K; Kim BN; Liu X; Berberian K; Fang Q; Mathai CJ; Gangopadhyay S; Gillis KD; Lindau M
    J Biomater Nanobiotechnol; 2012; 3(2A):243-253. PubMed ID: 22708072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectrode Array With Transparent ALD TiN Electrodes.
    Ryynänen T; Pelkonen A; Grigoras K; Ylivaara OME; Hyvärinen T; Ahopelto J; Prunnila M; Narkilahti S; Lekkala J
    Front Neurosci; 2019; 13():226. PubMed ID: 30967754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency enhancement in polymer light-emitting diodes via embedded indium-tin-oxide nanorods.
    Li HD; Hsu CS; Zhan FM; Chao YC
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7462-5. PubMed ID: 25831560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.
    Zhong ZY; Jiang YD
    J Colloid Interface Sci; 2006 Oct; 302(2):613-9. PubMed ID: 16890950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical modification of indium tin oxide using di(4-nitrophenyl) iodonium tetrafluoroborate.
    Charlton MR; Suhr KJ; Holliday BJ; Stevenson KJ
    Langmuir; 2015 Jan; 31(2):695-702. PubMed ID: 25526354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercising spatiotemporal control of cell attachment with optically transparent microelectrodes.
    S Shah S; Lee JY; Verkhoturov S; Tuleuova N; Schweikert EA; Ramanculov E; Revzin A
    Langmuir; 2008 Jun; 24(13):6837-44. PubMed ID: 18512875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axially Bound Ruthenium Phthalocyanine Monolayers on Indium Tin Oxide: Structure, Energetics, and Charge Transfer Properties.
    Ehamparam R; Oquendo LE; Liao MW; Brynnel AK; Ou KL; Armstrong NR; McGrath DV; Saavedra SS
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29213-29223. PubMed ID: 28795562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.