These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36831599)
21. Two-Stage Deep Neural Network Ding J; Song J; Li J; Tang J; Guo F Front Bioeng Biotechnol; 2021; 9():758495. PubMed ID: 35118054 [TBL] [Abstract][Full Text] [Related]
22. A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images. Alenezi F; Armghan A; Polat K Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36673072 [TBL] [Abstract][Full Text] [Related]
23. Skin lesion classification with ensembles of deep convolutional neural networks. Harangi B J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029 [TBL] [Abstract][Full Text] [Related]
24. Fusing fine-tuned deep features for skin lesion classification. Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354 [TBL] [Abstract][Full Text] [Related]
25. Acral melanoma detection using dermoscopic images and convolutional neural networks. Abbas Q; Ramzan F; Ghani MU Vis Comput Ind Biomed Art; 2021 Oct; 4(1):25. PubMed ID: 34618260 [TBL] [Abstract][Full Text] [Related]
26. Assessment of Diagnostic Accuracy of Dermoscopic Structures and Patterns Used in Melanoma Detection: A Systematic Review and Meta-analysis. Williams NM; Rojas KD; Reynolds JM; Kwon D; Shum-Tien J; Jaimes N JAMA Dermatol; 2021 Sep; 157(9):1078-1088. PubMed ID: 34347005 [TBL] [Abstract][Full Text] [Related]
27. Detection and analysis of irregular streaks in dermoscopic images of skin lesions. Sadeghi M; Lee TK; McLean D; Lui H; Atkins MS IEEE Trans Med Imaging; 2013 May; 32(5):849-61. PubMed ID: 23335664 [TBL] [Abstract][Full Text] [Related]
29. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Mahbod A; Schaefer G; Wang C; Dorffner G; Ecker R; Ellinger I Comput Methods Programs Biomed; 2020 Sep; 193():105475. PubMed ID: 32268255 [TBL] [Abstract][Full Text] [Related]
30. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. Tognetti L; Bonechi S; Andreini P; Bianchini M; Scarselli F; Cevenini G; Moscarella E; Farnetani F; Longo C; Lallas A; Carrera C; Puig S; Tiodorovic D; Perrot JL; Pellacani G; Argenziano G; Cinotti E; Cataldo G; Balistreri A; Mecocci A; Gori M; Rubegni P; Cartocci A J Dermatol Sci; 2021 Feb; 101(2):115-122. PubMed ID: 33358096 [TBL] [Abstract][Full Text] [Related]
31. The effects of skin lesion segmentation on the performance of dermatoscopic image classification. Mahbod A; Tschandl P; Langs G; Ecker R; Ellinger I Comput Methods Programs Biomed; 2020 Dec; 197():105725. PubMed ID: 32882594 [TBL] [Abstract][Full Text] [Related]
32. Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification. Dong C; Dai D; Zhang Y; Zhang C; Li Z; Xu S Comput Biol Med; 2023 Jan; 152():106321. PubMed ID: 36463792 [TBL] [Abstract][Full Text] [Related]
34. Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy for Melanoma Dermoscopy Images. Hagerty JR; Stanley RJ; Almubarak HA; Lama N; Kasmi R; Guo P; Drugge RJ; Rabinovitz HS; Oliviero M; Stoecker WV IEEE J Biomed Health Inform; 2019 Jul; 23(4):1385-1391. PubMed ID: 30624234 [TBL] [Abstract][Full Text] [Related]
35. S Alam MJ; Mohammad MS; Hossain MAF; Showmik IA; Raihan MS; Ahmed S; Mahmud T Comput Biol Med; 2022 Nov; 150():106148. PubMed ID: 36252363 [TBL] [Abstract][Full Text] [Related]
36. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
37. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556 [TBL] [Abstract][Full Text] [Related]
38. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
39. Artificial Intelligence Algorithms for Benign vs. Malignant Dermoscopic Skin Lesion Image Classification. Brutti F; La Rosa F; Lazzeri L; Benvenuti C; Bagnoni G; Massi D; Laurino M Bioengineering (Basel); 2023 Nov; 10(11):. PubMed ID: 38002446 [TBL] [Abstract][Full Text] [Related]
40. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]