These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3683171)

  • 1. 31P magnetic resonance spectroscopy of traumatic spinal cord injury.
    Vink R; Knoblach SM; Faden AI
    Magn Reson Med; 1987 Oct; 5(4):390-4. PubMed ID: 3683171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic changes in rabbit spinal cord after trauma: magnetic resonance spectroscopy studies.
    Vink R; Noble LJ; Knoblach SM; Bendall MR; Faden AI
    Ann Neurol; 1989 Jan; 25(1):26-31. PubMed ID: 2913925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traumatic spinal cord injury in rabbits decreases intracellular free magnesium concentration as measured by 31P MRS.
    Vink R; Yum SW; Lemke M; Demediuk P; Faden AI
    Brain Res; 1989 Jun; 490(1):144-7. PubMed ID: 2758321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus-31 magnetic resonance spectroscopy studies of pig spinal cord injury. Myelin changes, intracellular pH, and bioenergetics.
    Akino M; O'Donnell JM; Robitaille PM; Stokes BT
    Invest Radiol; 1997 Jul; 32(7):382-8. PubMed ID: 9228603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of TRH-analog treatment on tissue cations, phospholipids and energy metabolism after spinal cord injury.
    Faden AI; Yum SW; Lemke M; Vink R
    J Pharmacol Exp Ther; 1990 Nov; 255(2):608-14. PubMed ID: 2123006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The metabolic profilings study of serum and spinal cord from acute spinal cord injury rats ¹H NMR spectroscopy].
    Hu HH; Huang XL; Quan RF; Yang ZB; Xu JJ
    Zhongguo Gu Shang; 2017 Feb; 30(2):152-158. PubMed ID: 29350007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord immunoreactive TRH is altered after local traumatic injury.
    Salzman SK; Knight PB; Hirofuji E; Llados-Eckman C; Beckman AL; Winokur A
    Peptides; 1987; 8(2):247-50. PubMed ID: 3108865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord glucose utilization after experimental spinal cord injury.
    Rawe SE; Lee WA; Perot PL
    Neurosurgery; 1981 Jul; 9(1):40-7. PubMed ID: 7279171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traumatic spinal cord injury in rats causes increases in tissue thromboxane but not peptidoleukotrienes.
    Demediuk P; Faden AI
    J Neurosci Res; 1988 May; 20(1):115-21. PubMed ID: 3418749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord energy metabolism following compression trauma to the feline spinal cord.
    Anderson DK; Means ED; Waters TR; Spears CJ
    J Neurosurg; 1980 Sep; 53(3):375-80. PubMed ID: 7420153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study.
    Vink R; McIntosh TK; Weiner MW; Faden AI
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):563-71. PubMed ID: 3654796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viability of the neonatal rat isolated brainstem preparation by 31P MRS.
    Burton MD; Hitzig BM; Johnson DC
    Neurosci Lett; 1994 Mar; 169(1-2):31-4. PubMed ID: 8047287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P NMR characterization of graded traumatic brain injury in rats.
    Vink R; McIntosh TK; Yamakami I; Faden AI
    Magn Reson Med; 1988 Jan; 6(1):37-48. PubMed ID: 3352504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid alterations correlate with tissue magnesium decrease following impact trauma in rabbit spinal cord.
    Lemke M; Yum SW; Faden AI
    Mol Chem Neuropathol; 1990 Jun; 12(3):147-65. PubMed ID: 2128684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valuation of some biological parameters in acute spinal cord trauma: experimental study in rabbits.
    Scuotto A; Borriello R; Paggio G; D'Avanzo R; Cioffi FA; Sciaudone G
    J Neurosurg Sci; 1984; 28(3-4):145-7. PubMed ID: 6536708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus-31 nuclear magnetic resonance spectroscopy of the spinal cord in the pig, rat, and rabbit.
    O'Donnell JM; Akino M; Zhu H; Stokes BT
    Invest Radiol; 1996 Mar; 31(3):121-5. PubMed ID: 8675418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypermetabolism after experimental spinal cord injury.
    Rawe SE; Perot PL
    Surg Forum; 1979; 30():459-61. PubMed ID: 120027
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of rat skeletal muscle after spinal cord transection.
    Durozard D; Gabrielle C; Baverel G
    Muscle Nerve; 2000 Oct; 23(10):1561-8. PubMed ID: 11003792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic changes in cerebrospinal fluid pathways produced by subarachnoid kaolin injection and experimental spinal cord trauma in the rabbit: their relationship with the development of spinal deformity. An electron microscopic study and magnetic resonance imaging evaluation.
    Turgut M; Cullu E; Uysal A; Yurtseven ME; Alparslan B
    Neurosurg Rev; 2005 Oct; 28(4):289-97. PubMed ID: 15931513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes.
    Sharma HS; Olsson Y; Dey PK
    Neuroscience; 1990; 36(3):725-30. PubMed ID: 2234407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.