These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36831764)

  • 21. A Subject-Independent Brain-Computer Interface Framework Based on Supervised Autoencoder.
    Ayoobi N; Sadeghian EB
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():218-221. PubMed ID: 36086482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Model Combining Multi Branch Spectral-Temporal CNN, Efficient Channel Attention, and LightGBM For MI-BCI Classification.
    Jia H; Yu S; Yin S; Liu L; Yi C; Xue K; Li F; Yao D; Xu P; Zhang T
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain-computer interfaces.
    Zuo C; Jin J; Xu R; Wu L; Liu C; Miao Y; Wang X
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524961
    [No Abstract]   [Full Text] [Related]  

  • 24. Multi-Hierarchical Fusion to Capture the Latent Invariance for Calibration-Free Brain-Computer Interfaces.
    Yang J; Liu L; Yu H; Ma Z; Shen T
    Front Neurosci; 2022; 16():824471. PubMed ID: 35546894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface.
    Xu Y; Huang X; Lan Q
    Front Neurosci; 2021; 15():779231. PubMed ID: 34803600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subject-Invariant Deep Neural Networks based on Baseline Correction for EEG Motor Imagery BCI.
    Kwak Y; Kong K; Song WJ; Kim SE
    IEEE J Biomed Health Inform; 2023 Jan; PP():. PubMed ID: 37022076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration.
    Delisle-Rodriguez D; Silva L; Bastos-Filho T
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36716494
    [No Abstract]   [Full Text] [Related]  

  • 29. Continual Learning of a Transformer-Based Deep Learning Classifier Using an Initial Model from Action Observation EEG Data to Online Motor Imagery Classification.
    Lee PL; Chen SH; Chang TC; Lee WK; Hsu HT; Chang HH
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding.
    Zhi H; Yu T; Gu Z; Lin Z; Che L; Li Y; Yu Z
    IEEE Trans Biomed Eng; 2024 Jul; PP():. PubMed ID: 39046861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A subject-independent brain-computer interface based on smoothed, second-order baselining.
    Reuderink B; Farquhar J; Poel M; Nijholt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4600-4. PubMed ID: 22255362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain-Generalized EEG Classification With Category-Oriented Feature Decorrelation and Cross-View Consistency Learning.
    Liang S; Xuan C; Hang W; Lei B; Wang J; Qin J; Choi KS; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3285-3296. PubMed ID: 37527288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning Invariant Representations from EEG via Adversarial Inference.
    Özdenizci O; Wang YE; Koike-Akino T; ErdoĞmuŞ D
    IEEE Access; 2020; 8():27074-27085. PubMed ID: 33747669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MI-DAGSC: A domain adaptation approach incorporating comprehensive information from MI-EEG signals.
    Zhang D; Li H; Xie J; Li D
    Neural Netw; 2023 Oct; 167():183-198. PubMed ID: 37659115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prototype-based Domain Generalization Framework for Subject-Independent Brain-Computer Interfaces.
    Musellim S; Han DK; Jeong JH; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():711-714. PubMed ID: 36086535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
    Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G
    Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding.
    Yang J; Gao S; Shen T
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.