These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36831964)

  • 1. Quartz Crystal Microbalance Technology Coupled with Impedance for the Dynamic Monitoring of the Cardiomyocyte Beating Function and Drug Screening.
    Zhou Z; Zhang X; Zhou T; Huang F; Chen J
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies.
    Kasper M; Traxler L; Salopek J; Grabmayr H; Ebner A; Kienberger F
    Biosensors (Basel); 2016 May; 6(2):23. PubMed ID: 27231946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium.
    Burda I
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions.
    Shen H; Zhou T; Hu J
    Anal Bioanal Chem; 2017 Nov; 409(27):6463-6473. PubMed ID: 28889243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.
    Emir Diltemiz S; Keçili R; Ersöz A; Say R
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28245588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of cartilage oligomeric matrix protein using a quartz crystal microbalance.
    Wang SH; Shen CY; Weng TC; Lin PH; Yang JJ; Chen IF; Kuo SM; Chang SJ; Tu YK; Kao YH; Hung CH
    Sensors (Basel); 2010; 10(12):11633-43. PubMed ID: 22163547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral field excited quartz crystal microbalances for biosensing applications.
    Hartz JSR; Emanetoglu NW; Howell C; Vetelino JF
    Biointerphases; 2020 Jun; 15(3):030801. PubMed ID: 32486650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance.
    Jaruwongrungsee K; Waiwijit U; Wisitsoraat A; Sangworasil M; Pintavirooj C; Tuantranont A
    Biosens Bioelectron; 2015 May; 67():576-81. PubMed ID: 25307623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a troponin I biosensor using a peptide obtained through phage display.
    Wu J; Cropek DM; West AC; Banta S
    Anal Chem; 2010 Oct; 82(19):8235-43. PubMed ID: 20831206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides.
    Briand E; Zäch M; Svedhem S; Kasemo B; Petronis S
    Analyst; 2010 Feb; 135(2):343-50. PubMed ID: 20098769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection.
    Yoshimine H; Sasaki K; Furusawa H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustical sensing of cardiomyocyte cluster beating.
    Tymchenko N; Kunze A; Dahlenborg K; Svedhem S; Steel D
    Biochem Biophys Res Commun; 2013 Jun; 435(4):520-5. PubMed ID: 23643814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance.
    Kerivan EM; Tobin L; Basil M; Reinemann DN
    Cytoskeleton (Hoboken); 2023; 80(5-6):100-111. PubMed ID: 36891731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ.
    Wegener J; Janshoff A; Steinem C
    Cell Biochem Biophys; 2001; 34(1):121-51. PubMed ID: 11394439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Invasive Acoustical sensing of Drug-Induced Effects on the Contractile Machinery of Human Cardiomyocyte Clusters.
    Kunze A; Steel D; Dahlenborg K; Sartipy P; Svedhem S
    PLoS One; 2015; 10(5):e0125540. PubMed ID: 25961711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects.
    Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ
    Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions.
    Dixon MC
    J Biomol Tech; 2008 Jul; 19(3):151-8. PubMed ID: 19137101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic detection of cell adhesion to a coated quartz crystal microbalance - implications for studying the biocompatibility of polymers.
    Da-Silva AC; Soares SS; Ferreira GN
    Biotechnol J; 2013 Jun; 8(6):690-8. PubMed ID: 23447442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic monitoring of antimicrobial resistance using magnesium zinc oxide nanostructure-modified quartz crystal microbalance.
    Reyes PI; Yang K; Zheng A; Li R; Li G; Lu Y; Tsang CK; Zheng SXF
    Biosens Bioelectron; 2017 Jul; 93():189-197. PubMed ID: 27617411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of EIS and QCM NanoMIP-Based Sensors for Morphine.
    D'Aurelio R; Tothill IE; Salbini M; Calò F; Mazzotta E; Malitesta C; Chianella I
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.