These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36831987)

  • 1. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles.
    Kižys K; Zinovičius A; Jakštys B; Bružaitė I; Balčiūnas E; Petrulevičienė M; Ramanavičius A; Morkvėnaitė-Vilkončienė I
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells.
    Andriukonis E; Celiesiute-Germaniene R; Ramanavicius S; Viter R; Ramanavicius A
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells.
    Ramanavicius S; Ramanavicius A
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives.
    Kavanagh P; Leech D
    Phys Chem Chem Phys; 2013 Apr; 15(14):4859-69. PubMed ID: 23443881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design.
    Ramanavicius S; Ramanavicius A
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33287304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices.
    Kim J; Jeerapan I; Sempionatto JR; Barfidokht A; Mishra RK; Campbell AS; Hubble LJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2820-2828. PubMed ID: 30398344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.
    Campbell AS; Murata H; Carmali S; Matyjaszewski K; Islam MF; Russell AJ
    Biosens Bioelectron; 2016 Dec; 86():446-453. PubMed ID: 27424262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in material science for developing enzyme electrodes.
    Sarma AK; Vatsyayan P; Goswami P; Minteer SD
    Biosens Bioelectron; 2009 Apr; 24(8):2313-22. PubMed ID: 19022645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting Polymers in the Design of Biosensors and Biofuel Cells.
    Ramanavicius S; Ramanavicius A
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofuel cells: enhanced enzymatic bioelectrocatalysis.
    Meredith MT; Minteer SD
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():157-79. PubMed ID: 22524222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials.
    Lee S; Ozlu B; Eom T; Martin DC; Shim BS
    Biosens Bioelectron; 2020 Dec; 170():112620. PubMed ID: 33035903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells.
    Yakovleva ME; Gonaus C; Schropp K; ÓConghaile P; Leech D; Peterbauer CK; Gorton L
    Phys Chem Chem Phys; 2015 Apr; 17(14):9074-81. PubMed ID: 25752794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BioCapacitor: A novel principle for biosensors.
    Sode K; Yamazaki T; Lee I; Hanashi T; Tsugawa W
    Biosens Bioelectron; 2016 Feb; 76():20-8. PubMed ID: 26278505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical communication between microbial cells and electrodes via osmium redox systems.
    Hasan K; Patil SA; Leech D; Hägerhäll C; Gorton L
    Biochem Soc Trans; 2012 Dec; 40(6):1330-5. PubMed ID: 23176477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.
    Bollella P; Gorton L; Antiochia R
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29695133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing.
    Becker JM; Lielpetere A; Szczesny J; Bichon S; Gounel S; Mano N; Schuhmann W
    Bioelectrochemistry; 2023 Feb; 149():108314. PubMed ID: 36335789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical and electrophoretic deposition of enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes.
    Ammam M
    Biosens Bioelectron; 2014 Aug; 58():121-31. PubMed ID: 24632138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures.
    Schuhmann W
    J Biotechnol; 2002 Feb; 82(4):425-41. PubMed ID: 11996220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conjugated polymers and an iron complex as electrocatalytic materials for an enzyme-based biofuel cell.
    Noh HB; Won MS; Hwang J; Kwon NH; Shin SC; Shim YB
    Biosens Bioelectron; 2010 Mar; 25(7):1735-41. PubMed ID: 20080397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.