These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 36832235)
1. Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays. Rajaraman S; Yang F; Zamzmi G; Xue Z; Antani S Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832235 [TBL] [Abstract][Full Text] [Related]
2. Does image resolution impact chest X-ray based fine-grained Tuberculosis-consistent lesion segmentation? Rajaraman S; Yang F; Zamzmi G; Xue Z; Antani S ArXiv; 2023 Jan; ():. PubMed ID: 36789135 [TBL] [Abstract][Full Text] [Related]
3. Improved Semantic Segmentation of Tuberculosis-Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations. Rajaraman S; Folio LR; Dimperio J; Alderson PO; Antani SK Diagnostics (Basel); 2021 Mar; 11(4):. PubMed ID: 33808240 [TBL] [Abstract][Full Text] [Related]
4. Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays. Rajaraman S; Zamzmi G; Yang F; Xue Z; Jaeger S; Antani SK Biomedicines; 2022 Jun; 10(6):. PubMed ID: 35740345 [TBL] [Abstract][Full Text] [Related]
5. A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs. Rajaraman S; Yang F; Zamzmi G; Xue Z; Antani SK Bioengineering (Basel); 2022 Aug; 9(9):. PubMed ID: 36134959 [TBL] [Abstract][Full Text] [Related]
6. Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble. Khatibi T; Shahsavari A; Farahani A Phys Eng Sci Med; 2021 Mar; 44(1):291-311. PubMed ID: 33616887 [TBL] [Abstract][Full Text] [Related]
7. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Rajaraman S; Zamzmi G; Folio LR; Antani S Front Genet; 2022; 13():864724. PubMed ID: 35281798 [TBL] [Abstract][Full Text] [Related]
8. Effect of image resolution on automated classification of chest X-rays. Haque MIU; Dubey AK; Danciu I; Justice AC; Ovchinnikova OS; Hinkle JD J Med Imaging (Bellingham); 2023 Jul; 10(4):044503. PubMed ID: 37547812 [TBL] [Abstract][Full Text] [Related]
9. Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings. Rajaraman S; Zamzmi G; Folio L; Alderson P; Antani S Diagnostics (Basel); 2021 May; 11(5):. PubMed ID: 34067034 [TBL] [Abstract][Full Text] [Related]
10. Optimized chest X-ray image semantic segmentation networks for COVID-19 early detection. Gopatoti A; Vijayalakshmi P J Xray Sci Technol; 2022; 30(3):491-512. PubMed ID: 35213339 [TBL] [Abstract][Full Text] [Related]
11. Ensemble Technique Coupled with Deep Transfer Learning Framework for Automatic Detection of Tuberculosis from Chest X-ray Radiographs. Kotei E; Thirunavukarasu R Healthcare (Basel); 2022 Nov; 10(11):. PubMed ID: 36421659 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images. Ou CY; Chen IY; Chang HT; Wei CY; Li DY; Chen YK; Chang CY Diagnostics (Basel); 2024 Apr; 14(9):. PubMed ID: 38732366 [TBL] [Abstract][Full Text] [Related]
13. Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures. Abedalla A; Abdullah M; Al-Ayyoub M; Benkhelifa E PeerJ Comput Sci; 2021; 7():e607. PubMed ID: 34307860 [TBL] [Abstract][Full Text] [Related]
14. Annotations of Lung Abnormalities in Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases. Yang F; Lu PX; Deng M; Wáng YXJ; Rajaraman S; Xue Z; Folio LR; Antani SK; Jaeger S Data (Basel); 2022 Jul; 7(7):. PubMed ID: 36381384 [TBL] [Abstract][Full Text] [Related]
15. Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models. Guo R; Passi K; Jain CK Front Artif Intell; 2020; 3():583427. PubMed ID: 33733221 [TBL] [Abstract][Full Text] [Related]
16. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Nafisah SI; Muhammad G Neural Comput Appl; 2022 Apr; ():1-21. PubMed ID: 35462630 [TBL] [Abstract][Full Text] [Related]
17. A review on lung boundary detection in chest X-rays. Candemir S; Antani S Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):563-576. PubMed ID: 30730032 [TBL] [Abstract][Full Text] [Related]
18. A comprehensive segmentation of chest X-ray improves deep learning-based WHO radiologically confirmed pneumonia diagnosis in children. Li Y; Zhang L; Yu H; Wang J; Wang S; Liu J; Zheng Q Eur Radiol; 2024 May; 34(5):3471-3482. PubMed ID: 37930411 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based automatic detection of tuberculosis disease in chest X-ray images. Showkatian E; Salehi M; Ghaffari H; Reiazi R; Sadighi N Pol J Radiol; 2022; 87():e118-e124. PubMed ID: 35280947 [TBL] [Abstract][Full Text] [Related]
20. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Rahman T; Khandakar A; Qiblawey Y; Tahir A; Kiranyaz S; Abul Kashem SB; Islam MT; Al Maadeed S; Zughaier SM; Khan MS; Chowdhury MEH Comput Biol Med; 2021 May; 132():104319. PubMed ID: 33799220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]