These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36832448)

  • 1. Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.
    Sun Z
    Children (Basel); 2023 Feb; 10(2):. PubMed ID: 36832448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized Three-Dimensional Printed Models in Congenital Heart Disease.
    Sun Z; Lau I; Wong YH; Yeong CH
    J Clin Med; 2019 Apr; 8(4):. PubMed ID: 30995803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing in congenital heart disease: A systematic review.
    Lau I; Sun Z
    J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine.
    Sun Z; Wee C
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions.
    Sun Z
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33233652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease.
    Lau I; Gupta A; Ihdayhid A; Sun Z
    Biomolecules; 2022 Oct; 12(11):. PubMed ID: 36358899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects.
    White SC; Sedler J; Jones TW; Seckeler M
    Congenit Heart Dis; 2018 Nov; 13(6):1045-1049. PubMed ID: 30230245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments.
    Lau IWW; Liu D; Xu L; Fan Z; Sun Z
    PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models.
    Lau I; Wong YH; Yeong CH; Abdul Aziz YF; Md Sari NA; Hashim SA; Sun Z
    Quant Imaging Med Surg; 2019 Jan; 9(1):107-114. PubMed ID: 30788252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The usefulness of 3D printed heart models for medical student education in congenital heart disease.
    Karsenty C; Guitarte A; Dulac Y; Briot J; Hascoet S; Vincent R; Delepaul B; Vignaud P; Djeddai C; Hadeed K; Acar P
    BMC Med Educ; 2021 Sep; 21(1):480. PubMed ID: 34496844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice.
    Sun Z; Wong YH; Yeong CH
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity.
    Smerling J; Marboe CC; Lefkowitch JH; Pavlicova M; Bacha E; Einstein AJ; Naka Y; Glickstein J; Farooqi KM
    Pediatr Cardiol; 2019 Aug; 40(6):1258-1265. PubMed ID: 31240370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility and Access to 3-Dimensional Printing in the Context of Congenital Heart Disease: An International Physician Survey Study.
    Illmann CF; Hosking M; Harris KC
    CJC Open; 2020 Jul; 2(4):207-213. PubMed ID: 32695970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Criss-cross heart three-dimensional printed models in medical education: A multicenter study on their value as a supporting tool to conventional imaging.
    Valverde I; Gomez G; Byrne N; Anwar S; Silva Cerpa MA; Martin Talavera M; Pushparajah K; Velasco Forte MN
    Anat Sci Educ; 2022 Jul; 15(4):719-730. PubMed ID: 34008341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of 3D printing in cardiovascular diseases.
    Giannopoulos AA; Mitsouras D; Yoo SJ; Liu PP; Chatzizisis YS; Rybicki FJ
    Nat Rev Cardiol; 2016 Dec; 13(12):701-718. PubMed ID: 27786234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional Printed Cardiac Models: Applications in the Field of Medical Education, Cardiovascular Surgery, and Structural Heart Interventions.
    Valverde I
    Rev Esp Cardiol (Engl Ed); 2017 Apr; 70(4):282-291. PubMed ID: 28189544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic review of clinical value of three-dimensional printing in renal disease.
    Sun Z; Liu D
    Quant Imaging Med Surg; 2018 Apr; 8(3):311-325. PubMed ID: 29774184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living the heart in three dimensions: applications of 3D printing in CHD.
    Forte MNV; Hussain T; Roest A; Gomez G; Jongbloed M; Simpson J; Pushparajah K; Byrne N; Valverde I
    Cardiol Young; 2019 Jun; 29(6):733-743. PubMed ID: 31198120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Assessment of 3D Printed Model Accuracy in Delineating Congenital Heart Disease.
    Lee S; Squelch A; Sun Z
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33673159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printing and virtual surgery for congenital heart procedural planning.
    Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS
    Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.