These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36832630)
1. An Efficient Quantum Secret Sharing Scheme Based on Restricted Threshold Access Structure. Li L; Li Z Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832630 [TBL] [Abstract][Full Text] [Related]
2. Multi-Party Quantum Secret Sharing Based on GHZ State. Li Z; Jiang X; Liu L Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420454 [TBL] [Abstract][Full Text] [Related]
3. Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications. V AD; V K Pers Ubiquitous Comput; 2023; 27(3):875-885. PubMed ID: 33758585 [TBL] [Abstract][Full Text] [Related]
4. A Kind of ( Meng D; Li Z; Luo S; Han Z Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238582 [TBL] [Abstract][Full Text] [Related]
5. Multiparty weighted threshold quantum secret sharing based on the Chinese remainder theorem to share quantum information. Chou YH; Zeng GJ; Chen XY; Kuo SY Sci Rep; 2021 Mar; 11(1):6093. PubMed ID: 33731781 [TBL] [Abstract][Full Text] [Related]
6. A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity. Tian Y; Bian G; Chang J; Tang Y; Li J; Ye C Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238497 [TBL] [Abstract][Full Text] [Related]
7. Efficient Quantum Private Comparison Based on GHZ States. Hou M; Wu Y; Zhang S Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785662 [TBL] [Abstract][Full Text] [Related]
8. Secure multiparty quantum computation based on Lagrange unitary operator. Song X; Gou R; Wen A Sci Rep; 2020 May; 10(1):7921. PubMed ID: 32404969 [TBL] [Abstract][Full Text] [Related]
9. Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding. Lai H; Zhang J; Luo MX; Pan L; Pieprzyk J; Xiao F; Orgun MA Sci Rep; 2016 Aug; 6():31350. PubMed ID: 27515908 [TBL] [Abstract][Full Text] [Related]
10. Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities. Jia ZY; Gu J; Li BH; Yin HL; Chen ZB Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34199849 [TBL] [Abstract][Full Text] [Related]
14. Efficient Quantum Private Comparison without Sharing a Key. Li J; Che F; Wang Z; Fu A Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998244 [TBL] [Abstract][Full Text] [Related]
15. Quantum Secret Sharing Among Four Players Using Multipartite Bound Entanglement of an Optical Field. Zhou Y; Yu J; Yan Z; Jia X; Zhang J; Xie C; Peng K Phys Rev Lett; 2018 Oct; 121(15):150502. PubMed ID: 30362796 [TBL] [Abstract][Full Text] [Related]
16. A Semi-Quantum Private Comparison Base on W-States. Li J; Wang Z; Yang J; Ye C; Che F Entropy (Basel); 2023 Aug; 25(9):. PubMed ID: 37761568 [TBL] [Abstract][Full Text] [Related]
17. Novel Threshold Changeable Secret Sharing Schemes Based on Polynomial Interpolation. Yuan L; Li M; Guo C; Choo KR; Ren Y PLoS One; 2016; 11(10):e0165512. PubMed ID: 27792784 [TBL] [Abstract][Full Text] [Related]
18. Hybrid Quantum Protocols for Secure Multiparty Summation and Multiplication. Sutradhar K; Om H Sci Rep; 2020 Jun; 10(1):9097. PubMed ID: 32499534 [TBL] [Abstract][Full Text] [Related]
19. A collaborative secret sharing scheme based on the Chinese Remainder Theorem. Jia XX; Song YX; Wang DS; Nie DX; Wu JZ Math Biosci Eng; 2019 Feb; 16(3):1280-1299. PubMed ID: 30947420 [TBL] [Abstract][Full Text] [Related]