These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36833171)

  • 1. Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution.
    Matoulek D; Ježek B; Vohnoutová M; Symonová R
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics.
    Symonová R; Howell WM
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29443947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vertebrate genome: isochores and evolution.
    Bernardi G
    Mol Biol Evol; 1993 Jan; 10(1):186-204. PubMed ID: 8450755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish.
    Symonová R; Majtánová Z; Arias-Rodriguez L; Mořkovský L; Kořínková T; Cavin L; Pokorná MJ; Doležálková M; Flajšhans M; Normandeau E; Ráb P; Meyer A; Bernatchez L
    J Exp Zool B Mol Dev Evol; 2017 Nov; 328(7):607-619. PubMed ID: 28035749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide composition of transposable elements likely contributes to AT/GC compositional homogeneity of teleost fish genomes.
    Symonová R; Suh A
    Mob DNA; 2019; 10():49. PubMed ID: 31857829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution.
    Borůvková V; Howell WM; Matoulek D; Symonová R
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33671814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional compartmentalization and gene composition in the genome of vertebrates.
    Mouchiroud D; Fichant G; Bernardi G
    J Mol Evol; 1987; 26(3):198-204. PubMed ID: 3129567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isochores and the evolutionary genomics of vertebrates.
    Bernardi G
    Gene; 2000 Jan; 241(1):3-17. PubMed ID: 10607893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary genomics of vertebrates and its implications.
    D'Onofrio G; Jabbari K; Musto H; Alvarez-Valin F; Cruveiller S; Bernardi G
    Ann N Y Acad Sci; 1999 May; 870():81-94. PubMed ID: 10415475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic study reveals a transition from TA richness in invertebrates to GC richness in vertebrates at CpG flanking sites: an indication for context-dependent mutagenicity of methylated CpG sites.
    Wang Y; Leung FC
    Genomics Proteomics Bioinformatics; 2008 Dec; 6(3-4):144-54. PubMed ID: 19329065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish.
    Vohnoutová M; Sedláková A; Symonová R
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates.
    Chalopin D; Naville M; Plard F; Galiana D; Volff JN
    Genome Biol Evol; 2015 Jan; 7(2):567-80. PubMed ID: 25577199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicrosatNavigator: exploring nonrandom distribution and lineage-specificity of microsatellite repeat motifs on vertebrate sex chromosomes across 186 whole genomes.
    Rasoarahona R; Wattanadilokchatkun P; Panthum T; Jaisamut K; Lisachov A; Thong T; Singchat W; Ahmad SF; Han K; Kraichak E; Muangmai N; Koga A; Duengkae P; Antunes A; Srikulnath K
    Chromosome Res; 2023 Sep; 31(4):29. PubMed ID: 37775555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CpG islands, genes and isochores in the genomes of vertebrates.
    Aïssani B; Bernardi G
    Gene; 1991 Oct; 106(2):185-95. PubMed ID: 1937049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The GC-heterogeneity of teleost fishes.
    Melodelima C; Gautier C
    BMC Genomics; 2008 Dec; 9():632. PubMed ID: 19108743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity in isochore structure among cold-blooded vertebrates based on GC content of coding and non-coding sequences.
    Fortes GG; Bouza C; Martínez P; Sánchez L
    Genetica; 2007 Mar; 129(3):281-9. PubMed ID: 16897446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution.
    Adams RH; Blackmon H; Reyes-Velasco J; Schield DR; Card DC; Andrew AL; Waynewood N; Castoe TA
    Genome; 2016 May; 59(5):295-310. PubMed ID: 27064176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body temperature and evolutionary genomics of vertebrates: a lesson from the genomes of Takifugu rubripes and Tetraodon nigroviridis.
    Jabbari K; Bernardi G
    Gene; 2004 May; 333():179-81. PubMed ID: 15177693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and genomic organization of muscle microRNAs in fish genomes.
    Nachtigall PG; Dias MC; Pinhal D
    BMC Evol Biol; 2014 Sep; 14():196. PubMed ID: 25253178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositional patterns in vertebrate genomes: conservation and change in evolution.
    Bernardi G; Mouchiroud D; Gautier C; Bernardi G
    J Mol Evol; 1988 Dec-1989 Feb; 28(1-2):7-18. PubMed ID: 3148744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.