BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36833243)

  • 21. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight.
    Lichtenzveig J; Bonfil DJ; Zhang HB; Shtienberg D; Abbo S
    Theor Appl Genet; 2006 Nov; 113(7):1357-69. PubMed ID: 17016689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of quantitative trait loci for Ascochyta blight resistance in pea ( Pisum sativum L.), using populations from two crosses.
    Timmerman-Vaughan GM; Frew TJ; Butler R; Murray S; Gilpin M; Falloon K; Johnston P; Lakeman MB; Russell A; Khan T
    Theor Appl Genet; 2004 Nov; 109(8):1620-31. PubMed ID: 15372153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-trait analysis of domestication genes in Cicer arietinum - Cicer reticulatum hybrids with a multidimensional approach: Modeling wide crosses for crop improvement.
    Shin MG; Bulyntsev SV; Chang PL; Korbu LB; Carrasquila-Garcia N; Vishnyakova MA; Samsonova MG; Cook DR; Nuzhdin SV
    Plant Sci; 2019 Aug; 285():122-131. PubMed ID: 31203876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mapping of quantitative trait loci for ascochyta blight and botrytis grey mould resistance in an inter-specific cross in chickpea (
    Kushwah A; Bhatia D; Rani U; Yadav IS; Singh I; Bharadwaj C; Singh S
    Breed Sci; 2021 Apr; 71(2):229-239. PubMed ID: 34377071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers.
    Udupa SM; Baum M
    Theor Appl Genet; 2003 May; 106(7):1196-202. PubMed ID: 12748770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel Alleles from
    Rahman MW; Deokar AA; Lindsay D; Tar'an B
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic Analysis of Partially Resistant and Susceptible Chickpea Cultivars in Response to
    Deokar AA; Sagi M; Tar'an B
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Genomic Regions Linked to
    Alo F; Rani AR; Baum M; Singh S; Kehel Z; Rani U; Udupa S; Al-Sham'aa K; Alsamman AM; Istanbuli T; Attar B; Hamwieh A; Amri A
    Front Plant Sci; 2022; 13():762002. PubMed ID: 35548283
    [No Abstract]   [Full Text] [Related]  

  • 29. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.).
    Varshney RK; Mir RR; Bhatia S; Thudi M; Hu Y; Azam S; Zhang Y; Jaganathan D; You FM; Gao J; Riera-Lizarazu O; Luo MC
    Funct Integr Genomics; 2014 Mar; 14(1):59-73. PubMed ID: 24610029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance.
    Kaur S; Kimber RB; Cogan NO; Materne M; Forster JW; Paull JG
    Plant Sci; 2014 Mar; 217-218():47-55. PubMed ID: 24467895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving chickpea yield by incorporating resistance to ascochyta blight.
    Singh KB; Reddy MV
    Theor Appl Genet; 1996 Apr; 92(5):509-15. PubMed ID: 24166317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Sclerotinia stem rot resistance quantitative trait loci in a chickpea (
    Mwape VW; Khoo KHP; Chen K; Khentry Y; Newman TE; Derbyshire MC; Mather DE; Kamphuis LG
    Funct Plant Biol; 2022 Jun; 49(7):634-646. PubMed ID: 35339205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.
    Coram TE; Pang EC
    Plant Biotechnol J; 2006 Nov; 4(6):647-66. PubMed ID: 17309735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome Analysis Identified Novel Candidate Genes for Ascochyta Blight Resistance in Chickpea Using Whole Genome Re-sequencing Data.
    Li Y; Ruperao P; Batley J; Edwards D; Davidson J; Hobson K; Sutton T
    Front Plant Sci; 2017; 8():359. PubMed ID: 28367154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea.
    Garg V; Khan AW; Kudapa H; Kale SM; Chitikineni A; Qiwei S; Sharma M; Li C; Zhang B; Xin L; Kishor PBK; Varshney RK
    Plant Biotechnol J; 2019 May; 17(5):914-931. PubMed ID: 30328278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Sources of Resistance to Root-Lesion Nematode (
    Reen RA; Mumford MH; Thompson JP
    Phytopathology; 2019 Jul; 109(7):1270-1279. PubMed ID: 30895867
    [No Abstract]   [Full Text] [Related]  

  • 37. Determination of the Key Resistance Gene Analogs Involved in
    Zhou Z; Bar I; Sambasivam PT; Ford R
    Front Plant Sci; 2019; 10():644. PubMed ID: 31191572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First Report of Ascochyta rabiei Causing Ascochyta Blight of Cicer pinnatifidum.
    Can C; Ozkilinc H; Kahraman A; Ozkan H
    Plant Dis; 2007 Jul; 91(7):908. PubMed ID: 30780415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea.
    Saxena MS; Bajaj D; Das S; Kujur A; Kumar V; Singh M; Bansal KC; Tyagi AK; Parida SK
    DNA Res; 2014 Dec; 21(6):695-710. PubMed ID: 25335477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic Analysis of NBS-LRR Gene Family in Chickpea and Their Expression Profiles in Response to Ascochyta Blight Infection.
    Sagi MS; Deokar AA; Tar'an B
    Front Plant Sci; 2017; 8():838. PubMed ID: 28580004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.