BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36833920)

  • 1. The Removal of Pertechnetate from Aqueous Solution by Synthetic Hydroxyapatite: The Role of Reduction Reagents and Organic Ligands.
    Rosskopfová O; Viglašová E; Galamboš M; Daňo M; Tóthová D
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Tc dynamics in a bioreduced sediment: an investigation with gamma camera imaging of (99m)Tc-pertechnetate and (99m)Tc-DTPA.
    Vandehey NT; O'Neil JP; Slowey AJ; Boutchko R; Druhan JL; Moses WW; Nico PS
    Environ Sci Technol; 2012 Nov; 46(22):12583-90. PubMed ID: 23078357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite.
    Jiménez-Reyes M; Solache-Ríos M
    J Hazard Mater; 2010 Aug; 180(1-3):297-302. PubMed ID: 20439134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technetium-99 cycling in maple trees: characterization of changes in chemical form.
    Garten CT; Lomax RD
    Health Phys; 1989 Aug; 57(2):299-307. PubMed ID: 2547736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of ¹³⁷Cs⁺ and ⁹⁹TcO₄⁻ from aqueous solutions.
    Mahmoud MR; Seliman AF
    Appl Radiat Isot; 2014 Sep; 91():141-54. PubMed ID: 24935117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Co2+ from aqueous solutions by hydroxyapatite.
    Smiciklas I; Dimović I; Mitrić M
    Water Res; 2006 Jul; 40(12):2267-74. PubMed ID: 16766010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions.
    Gu B; Dong W; Liang L; Wall NA
    Environ Sci Technol; 2011 Jun; 45(11):4771-7. PubMed ID: 21539349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of citrate and oxalate on
    Montgomery D; Barber K; Edayilam N; Oqujiuba K; Young S; Biotidara T; Gathers A; Danjaji M; Tharayil N; Martinez N; Powell B
    J Environ Radioact; 2017 Jun; 172():130-142. PubMed ID: 28351009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of climatic conditions and soil type on 99TcO4- uptake by rye grass.
    Echevarria G; Morel JL; Florentin L; Leclerc-Cessac E
    J Environ Radioact; 2003; 70(1-2):85-97. PubMed ID: 12915062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDTA impact on Cd2+ migration in apatite-water system.
    Tõnsuaadu K; Viipsi K; Trikkel A
    J Hazard Mater; 2008 Jun; 154(1-3):491-7. PubMed ID: 18054159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of source and age of sodium pertechnetate Tc 99m on radiochemical purity of technetium Tc 99m exametazime.
    Millar AM
    Am J Hosp Pharm; 1993 Jan; 50(1):103-6. PubMed ID: 8381258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreduction of 99Tc pertechnetate by nanometer-sized metal oxides: new strategies for formation and sequestration of low-valent technetium.
    Burton-Pye BP; Radivojevic I; McGregor D; Mbomekalle IM; Lukens WW; Francesconi LC
    J Am Chem Soc; 2011 Nov; 133(46):18802-15. PubMed ID: 21985281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxy- and fluorapatite as sorbents in Cd(II)-Zn(II) multi-component solutions in the absence/presence of EDTA.
    Viipsi K; Sjöberg S; Tõnsuaadu K; Shchukarev A
    J Hazard Mater; 2013 May; 252-253():91-8. PubMed ID: 23500794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.
    Sebei H; Pham Minh D; Lyczko N; Sharrock P; Nzihou A
    Environ Technol; 2017 Oct; 38(20):2611-2620. PubMed ID: 27937683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature of lead complexed with dissolved organic matter on lead immobilization by hydroxyapatite in aqueous solutions and soils.
    Yamada N; Katoh M
    Chemosphere; 2020 Jun; 249():126122. PubMed ID: 32059150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.
    Wei W; Cui J; Wei Z
    Chemosphere; 2014 Jun; 105():14-23. PubMed ID: 24216261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behaviour of (99)Tc in aqueous solutions in the presence of iron oxides and microorganisms.
    Druteikienė R; Lukšienė B; Pečiulytė D; Mažeika K; Gudelis A; Baltrūnas D
    Appl Radiat Isot; 2014 Jul; 89():85-94. PubMed ID: 24607533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances.
    Ozeki K; Aoki H
    Biomed Mater Eng; 2016 Aug; 27(2-3):227-36. PubMed ID: 27567777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-distance transport of pertechnetate in the moonflower (Ipomoea alba).
    Clarke SJ; Rogiers SY; Currie GM
    J Environ Radioact; 2012 Jan; 103(1):54-8. PubMed ID: 22036159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.