These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36834482)

  • 1. The Effects of Epicuticular Wax on Anthracnose Resistance of
    Xiong W; Liao L; Ni Y; Gao H; Yang J; Guo Y
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum (Sorghum bicolor L. Moench).
    Uttam GA; Praveen M; Rao YV; Tonapi VA; Madhusudhana R
    Theor Appl Genet; 2017 Oct; 130(10):2109-2125. PubMed ID: 28702690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities.
    Xiao Y; Li X; Yao L; Xu D; Li Y; Zhang X; Li Z; Xiao Q; Ni Y; Guo Y
    Plant Physiol Biochem; 2020 Oct; 155():596-604. PubMed ID: 32846395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis provides insights into the bases of salicylic acid-induced resistance to anthracnose in sorghum.
    Sun X; Li A; Ma G; Zhao S; Liu L
    Plant Mol Biol; 2022 Sep; 110(1-2):69-80. PubMed ID: 35793006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.).
    Burow GB; Franks CD; Acosta-Martinez V; Xin Z
    Theor Appl Genet; 2009 Feb; 118(3):423-31. PubMed ID: 18985313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.
    J Felderhoff T; M McIntyre L; Saballos A; Vermerris W
    G3 (Bethesda); 2016 Jul; 6(7):1935-46. PubMed ID: 27194807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome wide association mapping of epi-cuticular wax genes in
    Elango D; Xue W; Chopra S
    Physiol Mol Biol Plants; 2020 Aug; 26(8):1727-1737. PubMed ID: 32801499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating Anthracnose Resistance Mechanisms in Sorghum-A Review.
    Stutts LR; Vermerris W
    Phytopathology; 2020 Dec; 110(12):1863-1876. PubMed ID: 33100146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress.
    Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M
    Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ANTHRACNOSE RESISTANCE GENE2 confers fungal resistance in sorghum.
    Mewa DB; Lee S; Liao CJ; Adeyanju A; Helm M; Lisch D; Mengiste T
    Plant J; 2023 Jan; 113(2):308-326. PubMed ID: 36441009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the genetic basis of anthracnose resistance in Ethiopian sorghum through a genome-wide association study.
    Birhanu C; Girma G; Mekbib F; Nida H; Tirfessa A; Lule D; Bekeko Z; Ayana G; Bejiga T; Bedada G; Tola M; Legesse T; Alemu H; Admasu S; Bekele A; Mengiste T
    BMC Genomics; 2024 Jul; 25(1):677. PubMed ID: 38977981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens.
    Uppalapati SR; Ishiga Y; Doraiswamy V; Bedair M; Mittal S; Chen J; Nakashima J; Tang Y; Tadege M; Ratet P; Chen R; Schultheiss H; Mysore KS
    Plant Cell; 2012 Jan; 24(1):353-70. PubMed ID: 22294617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.
    Zeisler V; Schreiber L
    Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry.
    Busta L; Schmitz E; Kosma DK; Schnable JC; Cahoon EB
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax.
    Zeisler-Diehl V; Müller Y; Schreiber L
    J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose.
    Ahn E; Prom LK; Hu Z; Odvody G; Magill C
    Plant Genome; 2021 Jul; 14(2):e20097. PubMed ID: 33900689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance.
    Zhang X; Ni Y; Xu D; Busta L; Xiao Y; Jetter R; Guo Y
    Plant Physiol Biochem; 2021 Jun; 163():285-295. PubMed ID: 33887646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench].
    Mengistu G; Shimelis H; Assefa E; Lule D
    PLoS One; 2021; 16(12):e0261461. PubMed ID: 34929013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggressiveness of Colletotrichum sublineola Strains from Sorghum bicolor and S. halepense to Sweet Sorghum Variety Sugar Drip, and Their Impact on Yield.
    Xavier KV; Pfeiffer T; Parreira DF; Chopra S; Vaillancourt L
    Plant Dis; 2017 Sep; 101(9):1578-1587. PubMed ID: 30677336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Sorghum-
    Abreha KB; Ortiz R; Carlsson AS; Geleta M
    Front Plant Sci; 2021; 12():641969. PubMed ID: 33959139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.