These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36834538)

  • 1. Origin of Retinal Oscillatory Potentials in the Mouse, a Tool to Specifically Locate Retinal Damage.
    Liao F; Liu H; Milla-Navarro S; Villa P; Germain F
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of GABAa, GABAc and glycine receptors to rat dark-adapted oscillatory potentials in the time and frequency domain.
    Dai J; He J; Wang G; Wang M; Li S; Yin ZQ
    Oncotarget; 2017 Sep; 8(44):77696-77709. PubMed ID: 29100418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina.
    Bloomfield SA; Xin D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):771-83. PubMed ID: 10718754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina.
    Petit-Jacques J; Bloomfield SA
    J Neurophysiol; 2008 Aug; 100(2):993-1006. PubMed ID: 18497354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the components of the rat dark-adapted electroretinogram by the three subtypes of GABA receptors.
    Möller A; Eysteinsson T
    Vis Neurosci; 2003; 20(5):535-42. PubMed ID: 14977332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium action potentials are not required for light-evoked release of GABA or glycine from retinal amacrine cells.
    Bieda MC; Copenhagen DR
    J Neurophysiol; 1999 Jun; 81(6):3092-5. PubMed ID: 10368424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) I. GABA- and glycine antagonists.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1980 Oct; 58(5):712-25. PubMed ID: 7211260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different types of retinal inhibition have distinct neurotransmitter release properties.
    Moore-Dotson JM; Klein JS; Mazade RE; Eggers ED
    J Neurophysiol; 2015 Apr; 113(7):2078-90. PubMed ID: 25568157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous oscillatory activity in rd1 mouse retina is transferred from ON pathway to OFF pathway via glycinergic synapse.
    Poria D; Dhingra NK
    J Neurophysiol; 2015 Jan; 113(2):420-5. PubMed ID: 25355966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the glycinergic input to bipolar cells of the mouse retina.
    Ivanova E; Müller U; Wässle H
    Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina.
    Cunningham JR; Neal MJ
    J Physiol; 1983 Mar; 336():563-77. PubMed ID: 6135799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonists of ionotropic gamma-aminobutyric acid receptors impair the NiCl2-mediated stimulation of the electroretinogram b-wave amplitude from the isolated superfused vertebrate retina.
    Siapich SA; Banat M; Albanna W; Hescheler J; Lüke M; Schneider T
    Acta Ophthalmol; 2009 Nov; 87(8):854-65. PubMed ID: 20002018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina.
    Arman AC; Sampath AP
    J Neurophysiol; 2012 May; 107(10):2649-59. PubMed ID: 22338022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling.
    Veruki ML; Zhou Y; Castilho Á; Morgans CW; Hartveit E
    J Neurosci; 2019 Jan; 39(4):627-650. PubMed ID: 30459218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the spontaneous synaptic activity of amacrine cells in the mouse retina.
    Frech MJ; Pérez-León J; Wässle H; Backus KH
    J Neurophysiol; 2001 Oct; 86(4):1632-43. PubMed ID: 11600626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander.
    Hare WA; Owen WG
    J Neurophysiol; 1996 Sep; 76(3):2005-19. PubMed ID: 8890310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing.
    Wang J; Mojumder DK; Yan J; Xie A; Standaert RF; Qian H; Pepperberg DR; Frishman LJ
    Exp Eye Res; 2015 Oct; 139():48-63. PubMed ID: 26164072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oscillatory potentials of the mudpuppy retina.
    Wachtmeister L; Dowling JE
    Invest Ophthalmol Vis Sci; 1978 Dec; 17(12):1176-88. PubMed ID: 721390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the retinal connectome.
    Anderson JR; Jones BW; Watt CB; Shaw MV; Yang JH; Demill D; Lauritzen JS; Lin Y; Rapp KD; Mastronarde D; Koshevoy P; Grimm B; Tasdizen T; Whitaker R; Marc RE
    Mol Vis; 2011 Feb; 17():355-79. PubMed ID: 21311605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of inhibitory postsynaptic currents in rod bipolar cells of the mouse retina.
    Frech MJ; Backus KH
    Vis Neurosci; 2004; 21(4):645-52. PubMed ID: 15579227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.