These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 36834641)

  • 1. The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies.
    Melaiu O; Vanni G; Portarena I; Pistolese CA; Anemona L; Pomella S; Bei R; Buonomo OC; Roselli M; Mauriello A; Barillari G
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normalization of tumor vasculature: A potential strategy to increase the efficiency of immune checkpoint blockades in cancers.
    Shi Y; Li Y; Wu B; Zhong C; Lang Q; Liang Z; Zhang Y; Lv C; Han S; Yu Y; Xu F; Tian Y
    Int Immunopharmacol; 2022 Sep; 110():108968. PubMed ID: 35764018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment.
    Song Y; Fu Y; Xie Q; Zhu B; Wang J; Zhang B
    Front Immunol; 2020; 11():1956. PubMed ID: 32983126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade.
    Zheng W; Qian C; Tang Y; Yang C; Zhou Y; Shen P; Chen W; Yu S; Wei Z; Wang A; Lu Y; Zhao Y
    Front Immunol; 2022; 13():1035323. PubMed ID: 36439137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges.
    Li SJ; Chen JX; Sun ZJ
    Cancer Commun (Lond); 2021 Sep; 41(9):830-850. PubMed ID: 34137513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiangiogenic antibody BD0801 combined with immune checkpoint inhibitors achieves synergistic antitumor activity and affects the tumor microenvironment.
    Xue L; Gao X; Zhang H; Tang J; Wang Q; Li F; Li X; Yu X; Lu Z; Huang Y; Tang R; Yang W
    BMC Cancer; 2021 Oct; 21(1):1134. PubMed ID: 34686154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.
    Lee WS; Yang H; Chon HJ; Kim C
    Exp Mol Med; 2020 Sep; 52(9):1475-1485. PubMed ID: 32913278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy.
    Li S; Zhang Q; Hong Y
    Technol Cancer Res Treat; 2020; 19():1533033820980116. PubMed ID: 33287656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications.
    Yin J; Gu T; Chaudhry N; Davidson NE; Huang Y
    Front Immunol; 2023; 14():1325615. PubMed ID: 38268926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergies of Targeting Angiogenesis and Immune Checkpoints in Cancer: From Mechanism to Clinical Applications.
    Zhou S; Zhang H
    Anticancer Agents Med Chem; 2020; 20(7):768-776. PubMed ID: 32031076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.
    Fukumura D; Kloepper J; Amoozgar Z; Duda DG; Jain RK
    Nat Rev Clin Oncol; 2018 May; 15(5):325-340. PubMed ID: 29508855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer.
    Georganaki M; van Hooren L; Dimberg A
    Front Immunol; 2018; 9():3081. PubMed ID: 30627131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor Vasculatures: A New Target for Cancer Immunotherapy.
    Liu Z; Wang Y; Huang Y; Kim BYS; Shan H; Wu D; Jiang W
    Trends Pharmacol Sci; 2019 Sep; 40(9):613-623. PubMed ID: 31331639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress in tumor angiogenesis and drug resistance in breast cancer.
    Mou J; Li C; Zheng Q; Meng X; Tang H
    Cancer Biol Med; 2024 Jun; 21(7):571-85. PubMed ID: 38940663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of immune checkpoint blockade in breast cancer.
    Pellegrino B; Tommasi C; Cursio OE; Musolino A; Migliori E; De Silva P; Senevirathne TH; Schena M; Scartozzi M; Farci D; Willard-Gallo K; Solinas C
    Semin Oncol; 2021 Jun; 48(3):208-225. PubMed ID: 34620502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing vascular normalization: A promising strategy for immunotherapy.
    Luo X; Zou W; Wei Z; Yu S; Zhao Y; Wu Y; Wang A; Lu Y
    Int Immunopharmacol; 2022 Nov; 112():109167. PubMed ID: 36037653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Combination of Immune Checkpoint Blockade and Angiogenesis Inhibitors in the Treatment of Advanced Non-Small Cell Lung Cancer.
    Ren S; Xiong X; You H; Shen J; Zhou P
    Front Immunol; 2021; 12():689132. PubMed ID: 34149730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer.
    Missiaen R; Mazzone M; Bergers G
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):107-116. PubMed ID: 29935312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.