These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 36834724)

  • 1. Recent Developments in Polymer Nanocomposites for Bone Regeneration.
    Abbas M; Alqahtani MS; Alhifzi R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration.
    Bagchi A; Meka SR; Rao BN; Chatterjee K
    Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of biocomposite materials for bone tissue regeneration.
    Yunus Basha R; Sampath Kumar TS; Doble M
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():452-63. PubMed ID: 26354284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.
    Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M
    J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposites for bone tissue regeneration.
    Sahoo NG; Pan YZ; Li L; He CB
    Nanomedicine (Lond); 2013 Apr; 8(4):639-53. PubMed ID: 23560413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioresorbable and nonresorbable polymers for bone tissue engineering.
    Girones Molera J; Mendez JA; San Roman J
    Curr Pharm Des; 2012; 18(18):2536-57. PubMed ID: 22512444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration.
    Trzaskowska M; Vivcharenko V; Franus W; Goryczka T; Barylski A; Przekora A
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering.
    Silva M; Ferreira FN; Alves NM; Paiva MC
    J Nanobiotechnology; 2020 Jan; 18(1):23. PubMed ID: 32000800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics.
    Ielo I; Calabrese G; De Luca G; Conoci S
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial-based scaffolds for bone tissue engineering and regeneration.
    Ye G; Bao F; Zhang X; Song Z; Liao Y; Fei Y; Bunpetch V; Heng BC; Shen W; Liu H; Zhou J; Ouyang H
    Nanomedicine (Lond); 2020 Aug; 15(20):1995-2017. PubMed ID: 32812486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
    Gao C; Deng Y; Feng P; Mao Z; Li P; Yang B; Deng J; Cao Y; Shuai C; Peng S
    Int J Mol Sci; 2014 Mar; 15(3):4714-32. PubMed ID: 24646912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive polymers: A comprehensive review on bone grafting biomaterials.
    Pourhajrezaei S; Abbas Z; Khalili MA; Madineh H; Jooya H; Babaeizad A; Gross JD; Samadi A
    Int J Biol Macromol; 2024 Oct; 278(Pt 2):134615. PubMed ID: 39128743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing three different three-dimensional scaffolds for bone tissue engineering: an in vivo study.
    Rismanchian M; Nosouhian S; Razavi SM; Davoudi A; Sadeghiyan H
    J Contemp Dent Pract; 2015 Jan; 16(1):25-30. PubMed ID: 25876946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Bone Regeneration: From Graft to Tissue Engineering.
    Battafarano G; Rossi M; De Martino V; Marampon F; Borro L; Secinaro A; Del Fattore A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity.
    Tamburaci S; Tihminlioglu F
    Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.