BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36834724)

  • 1. Recent Developments in Polymer Nanocomposites for Bone Regeneration.
    Abbas M; Alqahtani MS; Alhifzi R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration.
    Bagchi A; Meka SR; Rao BN; Chatterjee K
    Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of biocomposite materials for bone tissue regeneration.
    Yunus Basha R; Sampath Kumar TS; Doble M
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():452-63. PubMed ID: 26354284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.
    Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M
    J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposites for bone tissue regeneration.
    Sahoo NG; Pan YZ; Li L; He CB
    Nanomedicine (Lond); 2013 Apr; 8(4):639-53. PubMed ID: 23560413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioresorbable and nonresorbable polymers for bone tissue engineering.
    Girones Molera J; Mendez JA; San Roman J
    Curr Pharm Des; 2012; 18(18):2536-57. PubMed ID: 22512444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration.
    Trzaskowska M; Vivcharenko V; Franus W; Goryczka T; Barylski A; Przekora A
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering.
    Silva M; Ferreira FN; Alves NM; Paiva MC
    J Nanobiotechnology; 2020 Jan; 18(1):23. PubMed ID: 32000800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics.
    Ielo I; Calabrese G; De Luca G; Conoci S
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial-based scaffolds for bone tissue engineering and regeneration.
    Ye G; Bao F; Zhang X; Song Z; Liao Y; Fei Y; Bunpetch V; Heng BC; Shen W; Liu H; Zhou J; Ouyang H
    Nanomedicine (Lond); 2020 Aug; 15(20):1995-2017. PubMed ID: 32812486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
    Gao C; Deng Y; Feng P; Mao Z; Li P; Yang B; Deng J; Cao Y; Shuai C; Peng S
    Int J Mol Sci; 2014 Mar; 15(3):4714-32. PubMed ID: 24646912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing three different three-dimensional scaffolds for bone tissue engineering: an in vivo study.
    Rismanchian M; Nosouhian S; Razavi SM; Davoudi A; Sadeghiyan H
    J Contemp Dent Pract; 2015 Jan; 16(1):25-30. PubMed ID: 25876946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Bone Regeneration: From Graft to Tissue Engineering.
    Battafarano G; Rossi M; De Martino V; Marampon F; Borro L; Secinaro A; Del Fattore A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity.
    Tamburaci S; Tihminlioglu F
    Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering.
    Cidonio G; Glinka M; Kim YH; Dawson JI; Oreffo ROC
    Methods Mol Biol; 2021; 2147():63-72. PubMed ID: 32840811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.