BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36834750)

  • 21. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and molecular analysis of circulating tumor cells from lung cancer patients using a microfluidic chip type cell sorter.
    Watanabe M; Kenmotsu H; Ko R; Wakuda K; Ono A; Imai H; Taira T; Naito T; Murakami H; Abe M; Endo M; Nakajima T; Koh Y; Takahashi T
    Cancer Sci; 2018 Aug; 109(8):2539-2548. PubMed ID: 29900633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation.
    Wu M; Huang PH; Zhang R; Mao Z; Chen C; Kemeny G; Li P; Lee AV; Gyanchandani R; Armstrong AJ; Dao M; Suresh S; Huang TJ
    Small; 2018 Aug; 14(32):e1801131. PubMed ID: 29968402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ethylene oxide) Concentration Gradient-Based Microfluidic Isolation of Circulating Tumor Cells.
    Cheng Y; Zhang S; Qin L; Zhao J; Song H; Yuan Y; Sun J; Tian F; Liu C
    Anal Chem; 2023 Feb; 95(6):3468-3475. PubMed ID: 36725367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study.
    Altay R; Yapici MK; Koşar A
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-based separation methods of circulating tumor cells.
    Hao SJ; Wan Y; Xia YQ; Zou X; Zheng SY
    Adv Drug Deliv Rev; 2018 Feb; 125():3-20. PubMed ID: 29326054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.
    Khoo BL; Warkiani ME; Tan DS; Bhagat AA; Irwin D; Lau DP; Lim AS; Lim KH; Krisna SS; Lim WT; Yap YS; Lee SC; Soo RA; Han J; Lim CT
    PLoS One; 2014; 9(7):e99409. PubMed ID: 24999991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchtop technologies for circulating tumor cells separation based on biophysical properties.
    Low WS; Wan Abas WA
    Biomed Res Int; 2015; 2015():239362. PubMed ID: 25977918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of circulating cancer cells by unique microfluidic chip in colorectal cancer.
    Du HX; Zhang ZG; Yang ZL; Chen D; Chen JD; Hut RJ
    Oncol Res; 2011; 19(10-11):487-500. PubMed ID: 22715592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients.
    Tan SJ; Lakshmi RL; Chen P; Lim WT; Yobas L; Lim CT
    Biosens Bioelectron; 2010 Dec; 26(4):1701-5. PubMed ID: 20719496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells.
    Lee Y; Guan G; Bhagat AA
    Cytometry A; 2018 Dec; 93(12):1251-1254. PubMed ID: 30080307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis.
    Karthick S; Pradeep PN; Kanchana P; Sen AK
    Lab Chip; 2018 Dec; 18(24):3802-3813. PubMed ID: 30402651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrathin silicon nitride membrane with slit-shaped pores for high-performance separation of circulating tumor cells.
    Li A; He X; Wu J; Zhang J; Xu G; Xu B; Zhao G; Shen Z
    Lab Chip; 2022 Sep; 22(19):3676-3686. PubMed ID: 35997043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidics for the Isolation and Detection of Circulating Tumor Cells.
    Sierra-Agudelo J; Rodriguez-Trujillo R; Samitier J
    Adv Exp Med Biol; 2022; 1379():389-412. PubMed ID: 35761001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review.
    Farahinia A; Zhang W; Badea I
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood.
    Shirai K; Guan G; Meihui T; Xiaoling P; Oka Y; Takahashi Y; Bhagat AAS; Yanagida M; Iwanaga S; Matsubara N; Mukohara T; Yoshida T
    Lab Chip; 2022 Nov; 22(22):4418-4429. PubMed ID: 36305222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.