These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 36835189)
41. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Corrales L; Gajewski TF Clin Cancer Res; 2015 Nov; 21(21):4774-9. PubMed ID: 26373573 [TBL] [Abstract][Full Text] [Related]
42. TES functions as a Mena-dependent tumor suppressor in gastric cancer carcinogenesis and metastasis. Wang DD; Chen YB; Zhao JJ; Zhang XF; Zhu GC; Weng DS; Pan K; Lv L; Pan QZ; Jiang SS; Wang LL; Xia JC Cancer Commun (Lond); 2019 Feb; 39(1):3. PubMed ID: 30728082 [TBL] [Abstract][Full Text] [Related]
43. Components of the cellular cytoskeleton: a new generation of markers of histogenetic origin? Osborn M J Invest Dermatol; 1984 May; 82(5):443-5. PubMed ID: 6392429 [No Abstract] [Full Text] [Related]
44. The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Kanaan Z; Qadan M; Eichenberger MR; Galandiuk S Genet Test Mol Biomarkers; 2010 Jun; 14(3):347-53. PubMed ID: 20406101 [TBL] [Abstract][Full Text] [Related]
45. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. Han ZJ; Li YB; Yang LX; Cheng HJ; Liu X; Chen H Molecules; 2021 Dec; 27(1):. PubMed ID: 35011369 [TBL] [Abstract][Full Text] [Related]
46. Red cell membrane cytoskeleton and the control of membrane properties. Pinder JC Biochem Soc Trans; 1991 Nov; 19(4):1039-41. PubMed ID: 1794461 [No Abstract] [Full Text] [Related]
47. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy. Qiu Q; Lin Y; Ma Y; Li X; Liang J; Chen Z; Liu K; Huang Y; Luo H; Huang R; Luo L Front Immunol; 2020; 11():612202. PubMed ID: 33488618 [TBL] [Abstract][Full Text] [Related]
48. Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins. An X; Zhang X; Debnath G; Baines AJ; Mohandas N Biochemistry; 2006 May; 45(18):5725-32. PubMed ID: 16669616 [TBL] [Abstract][Full Text] [Related]
49. Clinical relevance of cytoskeleton associated proteins for ovarian cancer. Schiewek J; Schumacher U; Lange T; Joosse SA; Wikman H; Pantel K; Mikhaylova M; Kneussel M; Linder S; Schmalfeldt B; Oliveira-Ferrer L; Windhorst S J Cancer Res Clin Oncol; 2018 Nov; 144(11):2195-2205. PubMed ID: 30094535 [TBL] [Abstract][Full Text] [Related]
50. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. Zhao B; Li H; Xia Y; Wang Y; Wang Y; Shi Y; Xing H; Qu T; Wang Y; Ma W J Hematol Oncol; 2022 Oct; 15(1):153. PubMed ID: 36284349 [TBL] [Abstract][Full Text] [Related]
51. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497 [TBL] [Abstract][Full Text] [Related]
52. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model. Meng M; Wang W; Yan J; Tan J; Liao L; Shi J; Wei C; Xie Y; Jin X; Yang L; Jin Q; Zhu H; Tan W; Yang F; Hou Z Tumour Biol; 2016 Aug; 37(8):10317-27. PubMed ID: 26842926 [TBL] [Abstract][Full Text] [Related]
53. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer. Prasad M; Zorea J; Jagadeeshan S; Shnerb AB; Mathukkada S; Bouaoud J; Michon L; Novoplansky O; Badarni M; Cohen L; Yegodayev KM; Tzadok S; Rotblat B; Brezina L; Mock A; Karabajakian A; Fayette J; Cohen I; Cooks T; Allon I; Dimitstein O; Joshua B; Kong D; Voronov E; Scaltriti M; Carmi Y; Conde-Lopez C; Hess J; Kurth I; Morris LGT; Saintigny P; Elkabets M J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35292516 [TBL] [Abstract][Full Text] [Related]
54. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Thomas R; Al-Khadairi G; Roelands J; Hendrickx W; Dermime S; Bedognetti D; Decock J Front Immunol; 2018; 9():947. PubMed ID: 29770138 [TBL] [Abstract][Full Text] [Related]
55. Cardiac muscle cell cytoskeletal protein 4.1: analysis of transcripts and subcellular location--relevance to membrane integrity, microstructure, and possible role in heart failure. Taylor-Harris PM; Keating LA; Maggs AM; Phillips GW; Birks EJ; Franklin RC; Yacoub MH; Baines AJ; Pinder JC Mamm Genome; 2005 Mar; 16(3):137-51. PubMed ID: 15834631 [TBL] [Abstract][Full Text] [Related]
56. Tumor Microenvironment and its Implications for Antitumor Immunity in Cholangiocarcinoma: Future Perspectives for Novel Therapies. Cao H; Huang T; Dai M; Kong X; Liu H; Zheng Z; Sun G; Sun G; Rong D; Jin Z; Tang W; Xia Y Int J Biol Sci; 2022; 18(14):5369-5390. PubMed ID: 36147461 [TBL] [Abstract][Full Text] [Related]
57. Anti-immunoglobulin and phorbol ester induce phosphorylation of proteins associated with the plasma membrane and cytoskeleton in murine B lymphocytes. Hornbeck P; Paul WE J Biol Chem; 1986 Nov; 261(31):14817-24. PubMed ID: 3021753 [TBL] [Abstract][Full Text] [Related]
58. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Ali MRK; Wu Y; Tang Y; Xiao H; Chen K; Han T; Fang N; Wu R; El-Sayed MA Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5655-E5663. PubMed ID: 28652358 [TBL] [Abstract][Full Text] [Related]
59. Polarized Organization of the Cytoskeleton: Regulation by Cell Polarity Proteins. Raman R; Pinto CS; Sonawane M J Mol Biol; 2018 Sep; 430(19):3565-3584. PubMed ID: 29949753 [TBL] [Abstract][Full Text] [Related]
60. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. De Cicco P; Ercolano G; Ianaro A Front Immunol; 2020; 11():1680. PubMed ID: 32849585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]