BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 36835289)

  • 1. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives.
    Orlando M; Molla G; Castellani P; Pirillo V; Torretta V; Ferronato N
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering.
    Lee GH; Kim DW; Jin YH; Kim SM; Lim ES; Cha MJ; Ko JK; Gong G; Lee SM; Um Y; Han SO; Ahn JH
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation.
    Danso D; Chow J; Streit WR
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31324632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?
    Wei R; Zimmermann W
    Microb Biotechnol; 2017 Nov; 10(6):1308-1322. PubMed ID: 28371373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization.
    Nikolaivits E; Pantelic B; Azeem M; Taxeidis G; Babu R; Topakas E; Brennan Fournet M; Nikodinovic-Runic J
    Front Bioeng Biotechnol; 2021; 9():696040. PubMed ID: 34239864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preface to the special issue: biotechnology of plastic waste degradation and valorization].
    Zhou J; Su T; Jiang M; Qi Q
    Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):1861-1866. PubMed ID: 37212217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects.
    Liu J; He J; Xue R; Xu B; Qian X; Xin F; Blank LM; Zhou J; Wei R; Dong W; Jiang M
    Biotechnol Adv; 2021; 48():107730. PubMed ID: 33713745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes.
    Magnin A; Entzmann L; Pollet E; Avérous L
    Waste Manag; 2021 Aug; 132():23-30. PubMed ID: 34304019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop.
    Jiménez DJ; Öztürk B; Wei R; Bugg TD; Amaya Gomez CV; Salcedo Galan F; Castro-Mayorga JL; Saldarriaga JF; Tarazona NA
    Appl Environ Microbiol; 2022 Jul; 88(14):e0072122. PubMed ID: 35762791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytical review on revamping plastic waste management: exploring recycling, biodegradation, and the growing role of biobased plastics.
    Rajvanshi J; Sogani M; Tziouvaras G; Kumar A; Syed Z; Sonu K; Gupta NS; Sen H
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38627348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rethinking plastic recycling: A comparison between North America and Europe.
    Ackerman J; Levin DB
    J Environ Manage; 2023 Aug; 340():117859. PubMed ID: 37121010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Genes for a Circular and Sustainable Bio-PET Economy.
    Salvador M; Abdulmutalib U; Gonzalez J; Kim J; Smith AA; Faulon JL; Wei R; Zimmermann W; Jimenez JI
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31100963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic flows of polyethylene terephthalate (PET) plastic in China.
    Chu J; Cai Y; Li C; Wang X; Liu Q; He M
    Waste Manag; 2021 Apr; 124():273-282. PubMed ID: 33639412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis.
    Darzi R; Dubowski Y; Posmanik R
    Waste Manag; 2022 Apr; 143():223-231. PubMed ID: 35279014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the circular economy via hydrothermal processing of high-density waste plastics.
    Helmer Pedersen T; Conti F
    Waste Manag; 2017 Oct; 68():24-31. PubMed ID: 28623021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of polymers in managing plastic waste - A review.
    Lim BKH; Thian ES
    Sci Total Environ; 2022 Mar; 813():151880. PubMed ID: 34826495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical view on the technology readiness level (TRL) of microbial plastics biodegradation.
    Sales JCS; Santos AG; de Castro AM; Coelho MAZ
    World J Microbiol Biotechnol; 2021 Jun; 37(7):116. PubMed ID: 34125298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.