These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36835326)

  • 1. Insensitive High-Energy Density Materials Based on Azazole-Rich Rings: 1,2,4-Triazole
    Yang X; Li N; Li Y; Pang S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemical studies on three novel 1,2,4-triazole N-oxides as potential insensitive high explosives.
    Wu Q; Zhu W; Xiao H
    J Mol Model; 2014 Sep; 20(9):2441. PubMed ID: 25213112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and exploration of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives as energetic materials.
    Zhang JY; Chen GL; Jie Dong ; Pan Wang ; Gong XD
    Mol Divers; 2021 Nov; 25(4):2107-2121. PubMed ID: 32436152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of dinitro-bis-1,2,4-triazole-1,1'-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides.
    Dippold AA; Klapƶtke TM
    J Am Chem Soc; 2013 Jul; 135(26):9931-8. PubMed ID: 23763597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the detonation performance of azobistriazole energetic derivatives
    Li N; Yang X; Li X; Peng Z; Yin Z; Jiang C; Huang Z; Li Y
    Phys Chem Chem Phys; 2024 Jul; ():. PubMed ID: 38989787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design of aminopolynitroazole-based high-energy materials.
    Ghule VD; Srinivas D; Sarangapani R; Jadhav PM; Tewari SP
    J Mol Model; 2012 Jul; 18(7):3013-20. PubMed ID: 22160794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach.
    Wang Y; Liu Y; Song S; Yang Z; Qi X; Wang K; Liu Y; Zhang Q; Tian Y
    Nat Commun; 2018 Jun; 9(1):2444. PubMed ID: 29934564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability and detonation character of nitro-substituted derivatives of imidazole.
    Li B; Li L; Chen S
    J Mol Model; 2019 Sep; 25(9):298. PubMed ID: 31482374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on nitrogen rich energetic azoles.
    Ghule VD; Sarangapani R; Jadhav PM; Tewari SP
    J Mol Model; 2011 Jun; 17(6):1507-15. PubMed ID: 20872031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of the structure and properties of bicyclo[3.1.1]heptane derivatives for new high-energy density compounds with low impact sensitivity.
    Du M
    J Mol Model; 2017 Dec; 24(1):17. PubMed ID: 29256012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced primary explosive and secondary explosive based on a zwitterionic pyrazole-triazole derivative.
    Tang J; Xiong H; Zhang G; Tang Y; Yang H; Cheng G
    Chem Commun (Camb); 2022 Oct; 58(84):11847-11850. PubMed ID: 36196668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and selection of nitrogen-rich bridged di-1,3,5-triazine derivatives with high energy and reduced sensitivity.
    Pan Y; Zhu W; Xiao H
    J Mol Model; 2012 Jul; 18(7):3125-38. PubMed ID: 22212734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular design of energetic tetrazine-triazole derivatives.
    Li Y; Li Y; Jin S; Li S; Chen K; Bao F
    J Mol Model; 2021 Feb; 27(3):98. PubMed ID: 33641021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azo-Bridged Triazole Macrocycles: Computational Design, Energy Content, Performance, and Stability Assessment.
    Sharma K; Maan A; Ghule VD; Dharavath S
    J Phys Chem A; 2023 Dec; 127(48):10128-10138. PubMed ID: 38015623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and (difluoroamino)dinitromethyl derivatives of triazole and tetrazole.
    Fei T; Du Y; Pang S
    RSC Adv; 2018 Mar; 8(19):10215-10227. PubMed ID: 35540492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study on benzoheterocycle based energetic materials, effect of heterocyclic-fused, conjugation, hydrogen bond, and substitutional group on the detonation performance.
    Shen C; Wang P; Lu M
    J Mol Model; 2018 Jan; 24(1):40. PubMed ID: 29327141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional calculations for a high energy density compound of formula C6H 6-n (NO 2) n.
    Chi WJ; Li LL; Li BT; Wu HS
    J Mol Model; 2012 Aug; 18(8):3695-704. PubMed ID: 22382574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional study on the derivatives of purine.
    Wei-Jie C; Lu-Lin L; Bu-Tong L; Hai-Shun W
    J Mol Model; 2012 Aug; 18(8):3501-6. PubMed ID: 22302506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the stability, detonation performance and possibility of synthesis of the nitro derivatives of epoxyethane.
    Zhang X; Gong X
    J Mol Model; 2014 Aug; 20(8):2327. PubMed ID: 25092241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of imidazole derivative as high energetic materials.
    Xiaohong L; Ruizhou Z; Xianzhou Z
    J Hazard Mater; 2010 Nov; 183(1-3):622-31. PubMed ID: 20692090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.