These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 36835442)

  • 41. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix.
    Yu S; Su T; Wu H; Liu S; Wang D; Zhao T; Jin Z; Du W; Zhu MJ; Chua SL; Yang L; Zhu D; Gu L; Ma LZ
    Cell Res; 2015 Dec; 25(12):1352-67. PubMed ID: 26611635
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of Flagellin-Homologous Proteins in Biofilm Formation by Pathogenic
    Jung YC; Lee MA; Lee KH
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy.
    Ravel G; Bergmann M; Trubuil A; Deschamps J; Briandet R; Labarthe S
    Elife; 2022 Jun; 11():. PubMed ID: 35699414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of sub-inhibitory concentrations of antimicrobials on micrococcal nuclease and biofilm formation in Staphylococcus aureus.
    Rosman CWK; van der Mei HC; Sjollema J
    Sci Rep; 2021 Jun; 11(1):13241. PubMed ID: 34168199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms.
    Billings N; Millan M; Caldara M; Rusconi R; Tarasova Y; Stocker R; Ribbeck K
    PLoS Pathog; 2013; 9(8):e1003526. PubMed ID: 23950711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amphiphilic quaternary ammonium chitosans self-assemble onto bacterial and fungal biofilms and kill adherent microorganisms.
    Jung J; Wen J; Sun Y
    Colloids Surf B Biointerfaces; 2019 Feb; 174():1-8. PubMed ID: 30399475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides.
    Rendueles O; Travier L; Latour-Lambert P; Fontaine T; Magnus J; Denamur E; Ghigo JM
    mBio; 2011; 2(3):e00043-11. PubMed ID: 21558434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antibiofilm agents: A new perspective for antimicrobial strategy.
    Li XH; Lee JH
    J Microbiol; 2017 Oct; 55(10):753-766. PubMed ID: 28956348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance.
    Uruén C; Chopo-Escuin G; Tommassen J; Mainar-Jaime RC; Arenas J
    Antibiotics (Basel); 2020 Dec; 10(1):. PubMed ID: 33374551
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biofilm Development and Approaches to Biofilm Inhibition by Exopolysaccharides.
    Di Perri G; Ferlazzo G
    New Microbiol; 2022 Dec; 45(4):227-236. PubMed ID: 36190373
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strategies and Approaches for Discovery of Small Molecule Disruptors of Biofilm Physiology.
    Trebino MA; Shingare RD; MacMillan JB; Yildiz FH
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions.
    Reichhardt C; Jacobs HM; Matwichuk M; Wong C; Wozniak DJ; Parsek MR
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32661078
    [No Abstract]   [Full Text] [Related]  

  • 53. Chlorhexidine activity against bacterial biofilms.
    Bonez PC; Dos Santos Alves CF; Dalmolin TV; Agertt VA; Mizdal CR; Flores Vda C; Marques JB; Santos RC; Anraku de Campos MM
    Am J Infect Control; 2013 Dec; 41(12):e119-22. PubMed ID: 23910527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings.
    Zeng G; Ogaki R; Meyer RL
    Acta Biomater; 2015 Sep; 24():64-73. PubMed ID: 26093067
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [On the relationship between exopolysaccharides and Actinomyces viscosus in biofilms].
    Hu T; Ge JP; Xu RR; Yue SL; Tan H; Zhou XD
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2006 Mar; 37(2):180-2. PubMed ID: 16608069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.
    He J; Hwang G; Liu Y; Gao L; Kilpatrick-Liverman L; Santarpia P; Zhou X; Koo H
    J Bacteriol; 2016 Oct; 198(19):2651-61. PubMed ID: 27161116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance.
    Begić M; Josić D
    Electrophoresis; 2020 Oct; 41(20):1718-1739. PubMed ID: 32901923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
    Batoni G; Maisetta G; Esin S
    Biochim Biophys Acta; 2016 May; 1858(5):1044-60. PubMed ID: 26525663
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Streptomyces: Derived Active Extract Inhibits Candida albicans Biofilm Formation.
    Yang SQ; Zhou HJ; Teng LP; Zeng H
    Curr Microbiol; 2022 Sep; 79(11):332. PubMed ID: 36155861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria.
    Cao Y; Naseri M; He Y; Xu C; Walsh LJ; Ziora ZM
    J Glob Antimicrob Resist; 2020 Jun; 21():445-451. PubMed ID: 31830536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.