These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 36835442)

  • 61. Antimicrobial and biofilm inhibiting diketopiperazines.
    de Carvalho MP; Abraham WR
    Curr Med Chem; 2012; 19(21):3564-77. PubMed ID: 22709011
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action.
    Roy R; Tiwari M; Donelli G; Tiwari V
    Virulence; 2018 Jan; 9(1):522-554. PubMed ID: 28362216
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa.
    Colvin KM; Gordon VD; Murakami K; Borlee BR; Wozniak DJ; Wong GC; Parsek MR
    PLoS Pathog; 2011 Jan; 7(1):e1001264. PubMed ID: 21298031
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Candida biofilm resistance.
    Mukherjee PK; Chandra J
    Drug Resist Updat; 2004; 7(4-5):301-9. PubMed ID: 15533767
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis.
    Jafri H; Ahmad I
    J Mycol Med; 2020 Apr; 30(1):100911. PubMed ID: 32008964
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Near-Infrared Light-Enhanced Protease-Conjugated Gold Nanorods As A Photothermal Antimicrobial Agent For Elimination Of Exotoxin And Biofilms.
    Li W; Geng X; Liu D; Li Z
    Int J Nanomedicine; 2019; 14():8047-8058. PubMed ID: 31632017
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal.
    Skariyachan S; Sridhar VS; Packirisamy S; Kumargowda ST; Challapilli SB
    Folia Microbiol (Praha); 2018 Jul; 63(4):413-432. PubMed ID: 29352409
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fungal biofilms and antimycotics.
    Chandra J; Zhou G; Ghannoum MA
    Curr Drug Targets; 2005 Dec; 6(8):887-94. PubMed ID: 16375672
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antibioflm effects of extracellular matrix degradative agents on the biofilm of different strains of multi-drug resistant Corynebacterium striatum.
    Wen J; Wang Z; Du X; Liu R; Wang J
    Ann Clin Microbiol Antimicrob; 2022 Nov; 21(1):53. PubMed ID: 36434697
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement.
    Volejníková A; Melicherčík P; Nešuta O; Vaňková E; Bednárová L; Rybáček J; Čeřovský V
    J Med Microbiol; 2019 Jun; 68(6):961-972. PubMed ID: 31107198
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Towards the identification of the common features of bacterial biofilm development.
    Lasa I
    Int Microbiol; 2006 Mar; 9(1):21-8. PubMed ID: 16636986
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa.
    Nagant C; Pitts B; Stewart PS; Feng Y; Savage PB; Dehaye JP
    Microbiologyopen; 2013 Apr; 2(2):318-25. PubMed ID: 23436807
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Various biofilm matrices of the emerging pathogen
    Ravaioli S; Campoccia D; Speziale P; Pietrocola G; Zatorska B; Maso A; Presterl E; Montanaro L; Arciola CR
    Biofouling; 2020 Jan; 36(1):86-100. PubMed ID: 31985269
    [No Abstract]   [Full Text] [Related]  

  • 74. Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells.
    Beauvais A; Loussert C; Prevost MC; Verstrepen K; Latgé JP
    FEMS Yeast Res; 2009 May; 9(3):411-9. PubMed ID: 19207290
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Conserved Role for Biofilm Matrix Polysaccharides in
    Dominguez EG; Zarnowski R; Choy HL; Zhao M; Sanchez H; Nett JE; Andes DR
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30602527
    [No Abstract]   [Full Text] [Related]  

  • 76. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation.
    De Brucker K; Delattin N; Robijns S; Steenackers H; Verstraeten N; Landuyt B; Luyten W; Schoofs L; Dovgan B; Fröhlich M; Michiels J; Vanderleyden J; Cammue BP; Thevissen K
    Antimicrob Agents Chemother; 2014 Sep; 58(9):5395-404. PubMed ID: 24982087
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Complex Analysis of Vanillin and Syringic Acid as Natural Antimicrobial Agents against
    Minich A; Levarski Z; Mikulášová M; Straka M; Liptáková A; Stuchlík S
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163738
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Polysaccharide Galactan Inhibits Pseudomonas aeruginosa Biofilm Formation but Protects Pre-formed Biofilms from Antibiotics.
    Grishin AV; Karyagina AS
    Biochemistry (Mosc); 2019 May; 84(5):509-519. PubMed ID: 31234765
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.
    Ma L; Conover M; Lu H; Parsek MR; Bayles K; Wozniak DJ
    PLoS Pathog; 2009 Mar; 5(3):e1000354. PubMed ID: 19325879
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microplastic-associated pathogens and antimicrobial resistance in environment.
    Kaur K; Reddy S; Barathe P; Oak U; Shriram V; Kharat SS; Govarthanan M; Kumar V
    Chemosphere; 2022 Mar; 291(Pt 2):133005. PubMed ID: 34813845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.