These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36835528)

  • 1. Interaction of Amphipathic Peptide from Influenza Virus M1 Protein with Mitochondrial Cytochrome Oxidase.
    Oleynikov IP; Sudakov RV; Radyukhin VA; Arutyunyan AM; Azarkina NV; Vygodina TV
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Inhibition of Cytochrome c Oxidase by Triton X-100.
    Oleynikov IP; Azarkina NV; Vygodina TV; Konstantinov AA
    Biochemistry (Mosc); 2021 Jan; 86(1):44-58. PubMed ID: 33705281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Interaction of Mitochondrial Cytochrome
    Oleynikov IP; Sudakov RV; Azarkina NV; Vygodina TV
    Cells; 2022 Mar; 11(5):. PubMed ID: 35269529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved amphipathic ligand binding region influences k-path-dependent activity of cytochrome C oxidase.
    Hiser C; Buhrow L; Liu J; Kuhn L; Ferguson-Miller S
    Biochemistry; 2013 Feb; 52(8):1385-96. PubMed ID: 23351100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholate-induced dimerization of detergent- or phospholipid-solubilized bovine cytochrome C oxidase.
    Musatov A; Robinson NC
    Biochemistry; 2002 Apr; 41(13):4371-6. PubMed ID: 11914083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of Cytochrome C Oxidase with Steroid Hormones.
    Oleynikov IP; Azarkina NV; Vygodina TV; Konstantinov AA
    Cells; 2020 Sep; 9(10):. PubMed ID: 33003582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the Cholesterol-Dependent Activity of Macrophages IC-21 by CRAC Peptides with Substituted Motif-Forming Amino Acids.
    Dunina-Barkovskaya AY; Vishnyakova KS
    Biochem (Mosc) Suppl Ser A Membr Cell Biol; 2020; 14(4):331-343. PubMed ID: 33288988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction and in vitro analysis of potential physiological ligands of the bile acid binding site in cytochrome c oxidase.
    Buhrow L; Hiser C; Van Voorst JR; Ferguson-Miller S; Kuhn LA
    Biochemistry; 2013 Oct; 52(40):6995-7006. PubMed ID: 24073649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetic stability of cytochrome C oxidase: effect of bound phospholipid and dimerization.
    Sedlák E; Varhač R; Musatov A; Robinson NC
    Biophys J; 2014 Dec; 107(12):2941-2949. PubMed ID: 25517159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphipathic CRAC-Containing Peptides Derived from the Influenza Virus A M1 Protein Modulate Cholesterol-Dependent Activity of Cultured IC-21 Macrophages.
    Dunina-Barkovskaya AY; Vishnyakova KS; Golovko AO; Arutyunyan AM; Baratova LA; Bathishchev OV; Radyukhin VA
    Biochemistry (Mosc); 2018 Aug; 83(8):982-991. PubMed ID: 30208834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes.
    Mishra VK; Palgunachari MN
    Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase.
    Sedlák E; Panda M; Dale MP; Weintraub ST; Robinson NC
    Biochemistry; 2006 Jan; 45(3):746-54. PubMed ID: 16411750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of bovine cytochrome c oxidase in the ligand-free reduced state at neutral pH.
    Luo F; Shinzawa-Itoh K; Hagimoto K; Shimada A; Shimada S; Yamashita E; Yoshikawa S; Tsukihara T
    Acta Crystallogr F Struct Biol Commun; 2018 Feb; 74(Pt 2):92-98. PubMed ID: 29400318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential stability of dimeric and monomeric cytochrome c oxidase exposed to elevated hydrostatic pressure.
    Stanicová J; Sedlák E; Musatov A; Robinson NC
    Biochemistry; 2007 Jun; 46(24):7146-52. PubMed ID: 17530783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Antimicrobial Peptide with Two CRAC Motifs: Activity against
    Koksharova O; Safronova N; Dunina-Barkovskaya A
    Microorganisms; 2022 Jul; 10(8):. PubMed ID: 36013956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ca
    Vygodina TV; Kaminskaya OP; Konstantinov AA; Ptushenko VV
    Biochimie; 2018 Jun; 149():71-78. PubMed ID: 29635042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of conformational change and K-path ligands in controlling cytochrome
    Liu J; Hiser C; Ferguson-Miller S
    Biochem Soc Trans; 2017 Oct; 45(5):1087-1095. PubMed ID: 28842531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bound cardiolipin is essential for cytochrome c oxidase proton translocation.
    Musatov A; Robinson NC
    Biochimie; 2014 Oct; 105():159-64. PubMed ID: 25038566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system.
    Kubo M; Nakashima S; Yamaguchi S; Ogura T; Mochizuki M; Kang J; Tateno M; Shinzawa-Itoh K; Kato K; Yoshikawa S
    J Biol Chem; 2013 Oct; 288(42):30259-30269. PubMed ID: 23996000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.