These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36835681)
1. Quantifying the Aerodynamic Power Required for Flight and Testing for Adaptive Wind Drift in Passion-Vine Butterflies Srygley RB; Dudley R; Hernandez EJ; Kainz F; Riveros AJ; Ellington CP Insects; 2023 Jan; 14(2):. PubMed ID: 36835681 [TBL] [Abstract][Full Text] [Related]
2. Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences. Srygley RB; Dudley R Integr Comp Biol; 2008 Jul; 48(1):119-33. PubMed ID: 21669778 [TBL] [Abstract][Full Text] [Related]
3. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time. Becciu P; Troupin D; Dinevich L; Leshem Y; Sapir N Mov Ecol; 2023 Jul; 11(1):44. PubMed ID: 37501209 [TBL] [Abstract][Full Text] [Related]
4. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds. Hedrick TL; Usherwood JR; Biewener AA J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202 [TBL] [Abstract][Full Text] [Related]
5. Commuting fruit bats beneficially modulate their flight in relation to wind. Sapir N; Horvitz N; Dechmann DK; Fahr J; Wikelski M Proc Biol Sci; 2014 May; 281(1782):20140018. PubMed ID: 24648227 [TBL] [Abstract][Full Text] [Related]
6. Flight speed and performance of the wandering albatross with respect to wind. Richardson PL; Wakefield ED; Phillips RA Mov Ecol; 2018; 6():3. PubMed ID: 29556395 [TBL] [Abstract][Full Text] [Related]
7. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind. Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841 [TBL] [Abstract][Full Text] [Related]
8. Nathusius' bats optimize long-distance migration by flying at maximum range speed. Troxell SA; Holderied MW; Pētersons G; Voigt CC J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30814276 [TBL] [Abstract][Full Text] [Related]
9. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570 [TBL] [Abstract][Full Text] [Related]
10. Ecology of tern flight in relation to wind, topography and aerodynamic theory. Hedenström A; Åkesson S Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528786 [TBL] [Abstract][Full Text] [Related]
11. Estimating power curves of flying vertebrates. Rayner JM J Exp Biol; 1999 Dec; 202(Pt 23):3449-61. PubMed ID: 10562528 [TBL] [Abstract][Full Text] [Related]
12. The aerodynamic cost of flight in the short-tailed fruit bat (Carollia perspicillata): comparing theory with measurement. von Busse R; Waldman RM; Swartz SM; Voigt CC; Breuer KS J R Soc Interface; 2014 Jun; 11(95):20140147. PubMed ID: 24718450 [TBL] [Abstract][Full Text] [Related]
13. Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas. Srygley RB Anim Behav; 2001 Jan; 61(1):191-203. PubMed ID: 11170709 [TBL] [Abstract][Full Text] [Related]
14. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. Tobalske B; Dial K J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775 [TBL] [Abstract][Full Text] [Related]
15. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Salcedo C Environ Entomol; 2010 Jun; 39(3):907-11. PubMed ID: 20550805 [TBL] [Abstract][Full Text] [Related]
16. Metabolic power, mechanical power and efficiency during wind tunnel flight by the European starling Sturnus vulgaris. Ward S; Möller U; Rayner JM; Jackson DM; Bilo D; Nachtigall W; Speakman JR J Exp Biol; 2001 Oct; 204(Pt 19):3311-22. PubMed ID: 11606605 [TBL] [Abstract][Full Text] [Related]
17. The complete mitochondrial genome of the Sara Longwing Heliconius sara (Insecta: Lepidoptera: Nymphalidae). Chen C; Qiang Y; Peng XY; Qian ZQ; Wang ZZ Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3167-8. PubMed ID: 25707416 [TBL] [Abstract][Full Text] [Related]
18. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds. Johansson LC; Maeda M; Henningsson P; Hedenström A J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386402 [TBL] [Abstract][Full Text] [Related]
19. The power-speed relationship is U-shaped in two free-flying hawkmoths ( Warfvinge K; KleinHeerenbrink M; Hedenström A J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28954850 [TBL] [Abstract][Full Text] [Related]
20. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight. Tobalske BW; Puccinelli LA; Sheridan DC J Exp Biol; 2005 Aug; 208(Pt 15):2895-901. PubMed ID: 16043594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]