These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36835717)

  • 1. A Deep-Learning-Based Detection Approach for the Identification of Insect Species of Economic Importance.
    Tannous M; Stefanini C; Romano D
    Insects; 2023 Jan; 14(2):. PubMed ID: 36835717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying an Optimal Screen Mesh to Enable Augmentorium-Based Enhanced Biological Control of the Olive Fruit Fly Bactrocera oleae (Diptera: Tephritidae) and the Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephritidae).
    Desurmont GA; Tannières M; Roche M; Blanchet A; Manoukis NC
    J Insect Sci; 2022 May; 22(3):. PubMed ID: 35640027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving cryptic species complexes of major tephritid pests.
    Hendrichs J; Vera MT; De Meyer M; Clarke AR
    Zookeys; 2015; (540):5-39. PubMed ID: 26798252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the Physiological Age in Two Tephritid Fruit Fly Species Using Artificial Intelligence.
    González-López GI; Valenzuela-Carrasco G; Toledo-Mesa E; Juárez-Durán M; Tapia-McClung H; Pérez-Staples D
    J Econ Entomol; 2022 Oct; 115(5):1513-1520. PubMed ID: 36097669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique.
    Hadipour-Rokni R; Askari Asli-Ardeh E; Jahanbakhshi A; Esmaili Paeen-Afrakoti I; Sabzi S
    Comput Biol Med; 2023 Mar; 155():106611. PubMed ID: 36774891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey on crop pest detection using deep learning and machine learning approaches.
    Chithambarathanu M; Jeyakumar MK
    Multimed Tools Appl; 2023 Apr; ():1-34. PubMed ID: 37362671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote fruit fly detection using computer vision and machine learning-based electronic trap.
    Molina-Rotger M; Morán A; Miranda MA; Alorda-Ladaria B
    Front Plant Sci; 2023; 14():1241576. PubMed ID: 37881610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insecticidal Properties of Erythritol on Four Tropical Tephritid Fruit Flies,
    Cha DH; Skabeikis D; Kim BS; Lee JC; Choi MY
    Insects; 2023 May; 14(5):. PubMed ID: 37233100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity.
    Aladhadh S; Habib S; Islam M; Aloraini M; Aladhadh M; Al-Rawashdeh HS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of locally sustainable food baits and traps against the Mediterranean fruit fly Ceratitis capitata in Bolivia.
    Candia IF; Bautista V; Larsson Herrera S; Walter A; Ortuño Castro N; Tasin M; Dekker T
    Pest Manag Sci; 2019 Jun; 75(6):1671-1680. PubMed ID: 30506833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A loop-mediated isothermal amplification (LAMP) assay for rapid identification of
    Dermauw W; Van Moerkercke Y; Ebrahimi N; Casteels H; Bonte J; Witters J
    Curr Res Insect Sci; 2022; 2():100029. PubMed ID: 36003269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique.
    Vreysen MJB; Abd-Alla AMM; Bourtzis K; Bouyer J; Caceres C; de Beer C; Oliveira Carvalho D; Maiga H; Mamai W; Nikolouli K; Yamada H; Pereira R
    Insects; 2021 Apr; 12(4):. PubMed ID: 33924539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilisation of a mitochondrial intergenic region for species differentiation of fruit flies (Diptera: Tephritidae) in South Africa.
    Andrews KJ; Bester R; Manrakhan A; Maree HJ
    BMC Genomics; 2022 Dec; 23(1):793. PubMed ID: 36456909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae), Attraction to Volatile Compounds Produced by Host and Insect-Associated Yeast Strains.
    Vitanović E; Aldrich JR; Boundy-Mills K; Čagalj M; Ebeler SE; Burrack H; Zalom FG
    J Econ Entomol; 2020 Apr; 113(2):752-759. PubMed ID: 31879768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent Monitoring System of Migratory Pests Based on Searchlight Trap and Machine Vision.
    Sun G; Liu S; Luo H; Feng Z; Yang B; Luo J; Tang J; Yao Q; Xu J
    Front Plant Sci; 2022; 13():897739. PubMed ID: 35795344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Area-wide suppression of the Mediterranean fruit fly, Ceratitis capitata, and the Oriental fruit fly, Bactrocera dorsalis, in Kamuela, Hawaii.
    Vargas RI; Piñero JC; Mau RF; Jang EB; Klungness LM; McInnis DO; Harris EB; McQuate GT; Bautista RC; Wong L
    J Insect Sci; 2010; 10():135. PubMed ID: 20883128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Microbiomics of Tephritid Frugivorous Pests (Diptera: Tephritidae) From the Field: A Tale of High Variability Across and Within Species.
    De Cock M; Virgilio M; Vandamme P; Bourtzis K; De Meyer M; Willems A
    Front Microbiol; 2020; 11():1890. PubMed ID: 32849469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Based on the multi-scale information sharing network of fine-grained attention for agricultural pest detection.
    Linfeng W; Yong L; Jiayao L; Yunsheng W; Shipu X
    PLoS One; 2023; 18(10):e0286732. PubMed ID: 37796844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Bactrocera oleae genome: localization of nine genes on the polytene chromosomes of the olive fruit fly (Diptera: Tephritidae).
    Drosopoulou E; Nakou I; Mavragani-Tsipidou P
    Genome; 2014 Oct; 57(10):573-6. PubMed ID: 25723592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting common coccinellids found in sorghum using deep learning models.
    Wang C; Grijalva I; Caragea D; McCornack B
    Sci Rep; 2023 Jun; 13(1):9748. PubMed ID: 37328502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.