BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36836314)

  • 1. Comparative Transcriptomic Analysis of Key Genes Involved in Citrinin Biosynthesis in
    Huang Y; Yang C; Molnár I; Chen S
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836314
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of
    Hong JL; Wu L; Lu JQ; Zhou WB; Cao YJ; Lv WL; Liu B; Rao PF; Ni L; Lv XC
    RSC Adv; 2020 Jan; 10(9):5268-5282. PubMed ID: 35498272
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of Citrinin and Pigment Biosynthesis Mechanisms in
    Liang B; Du XJ; Li P; Sun CC; Wang S
    Front Microbiol; 2018; 9():1374. PubMed ID: 30002650
    [No Abstract]   [Full Text] [Related]  

  • 4. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducing red pigment and inhibiting citrinin production by adding lanthanum(III) ion in Monascus purpureus fermentation.
    Liu HQ; Huang ZF; Yang SZ; Tian XF; Wu ZQ
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):1905-1912. PubMed ID: 33576885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triton X-100 supplementation regulates growth and secondary metabolite biosynthesis during in-depth extractive fermentation of Monascus purpureus.
    Lu P; Wu A; Zhang S; Bai J; Guo T; Lin Q; Liu J
    J Biotechnol; 2021 Nov; 341():137-145. PubMed ID: 34601020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters.
    Higa Y; Kim YS; Altaf-Ul-Amin M; Huang M; Ono N; Kanaya S
    BMC Genomics; 2020 Oct; 21(1):679. PubMed ID: 32998685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MptriA, an Acetyltransferase Gene Involved in Pigment Biosynthesis in M. purpureus YY-1.
    Liang B; Du X; Li P; Sun C; Wang S
    J Agric Food Chem; 2018 Apr; 66(16):4129-4138. PubMed ID: 29633617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing.
    Zhang S; Zeng X; Lin Q; Liu J
    PLoS One; 2022; 17(6):e0263905. PubMed ID: 35648754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of the Chitin Biosynthetic Pathway Results in Significant Changes in the Cell Growth Phenotypes and Biosynthesis of Secondary Metabolites of
    Shu M; Lu P; Liu S; Zhang S; Gong Z; Cai X; Zhou B; Lin Q; Liu J
    J Fungi (Basel); 2022 Aug; 8(9):. PubMed ID: 36135635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptomic and Metabolomic Analyses Reveal the Regulatory Effect and Mechanism of Tea Extracts on the Biosynthesis of
    Li WL; Hong JL; Lu JQ; Tong SG; Ni L; Liu B; Lv XC
    Foods; 2022 Oct; 11(20):. PubMed ID: 37430908
    [No Abstract]   [Full Text] [Related]  

  • 12. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.
    Chen YP; Tseng CP; Chien IL; Wang WY; Liaw LL; Yuan GF
    J Agric Food Chem; 2008 Dec; 56(24):11767-72. PubMed ID: 19012408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis of Monascus purpureus at different fermentation times revealed candidate genes involved in exopolysaccharide biosynthesis.
    Xie L; Xie J; Chen X; Tao X; Xie J; Shi X; Huang Z
    Food Res Int; 2022 Oct; 160():111700. PubMed ID: 36076402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NaCl Inhibits Citrinin and Stimulates
    Zhen Z; Xiong X; Liu Y; Zhang J; Wang S; Li L; Gao M
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30769930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in
    Zhang J; Liu Y; Li L; Gao M
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30380661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine and S-Adenosylmethionine Regulate
    Yin S; Yang D; Zhu Y; Huang B
    Front Microbiol; 2022; 13():921540. PubMed ID: 35774468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry.
    Ketkaeo S; Sanpamongkolchai W; Morakul S; Baba S; Kobayashi G; Goto M
    J Gen Appl Microbiol; 2020 Aug; 66(3):163-168. PubMed ID: 31462600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of secondary metabolite biosynthesis in Monascus purpureus via cofactor metabolic engineering strategies.
    Liu J; Wu J; Cai X; Zhang S; Liang Y; Lin Q
    Food Microbiol; 2021 May; 95():103689. PubMed ID: 33397619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of
    Li L; Xu N; Chen F
    J Fungi (Basel); 2021 Dec; 7(12):. PubMed ID: 34947076
    [No Abstract]   [Full Text] [Related]  

  • 20. Low-Frequency Magnetic Field of Appropriate Strengths Changed Secondary Metabolite Production and Na
    Xiong X; Zhen Z; Liu Y; Gao M; Wang S; Li L; Zhang J
    Bioelectromagnetics; 2020 May; 41(4):289-297. PubMed ID: 32220027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.