These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36836667)

  • 1. Functional Analysis of Bna-miR399c-
    Du K; Yang Y; Li J; Wang M; Jiang J; Wu J; Fang Y; Xiang Y; Wang Y
    Life (Basel); 2023 Jan; 13(2):. PubMed ID: 36836667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater.
    Zaheer IE; Ali S; Saleem MH; Imran M; Alnusairi GSH; Alharbi BM; Riaz M; Abbas Z; Rizwan M; Soliman MH
    Plant Physiol Biochem; 2020 Oct; 155():70-84. PubMed ID: 32745932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis.
    Pant BD; Buhtz A; Kehr J; Scheible WR
    Plant J; 2008 Mar; 53(5):731-8. PubMed ID: 17988220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory network of microRNA399 and PHO2 by systemic signaling.
    Lin SI; Chiang SF; Lin WY; Chen JW; Tseng CY; Wu PC; Chiou TJ
    Plant Physiol; 2008 Jun; 147(2):732-46. PubMed ID: 18390805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley.
    Pacak A; Barciszewska-Pacak M; Swida-Barteczka A; Kruszka K; Sega P; Milanowska K; Jakobsen I; Jarmolowski A; Szweykowska-Kulinska Z
    Front Plant Sci; 2016; 7():926. PubMed ID: 27446155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.
    Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F
    Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis and functional characterization of the DELLA gene family associated with stress tolerance in B. napus.
    Sarwar R; Jiang T; Ding P; Gao Y; Tan X; Zhu K
    BMC Plant Biol; 2021 Jun; 21(1):286. PubMed ID: 34157966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of miRNAs and their targets in wax-deficient rapeseed.
    Liu T; Tang J; Chen L; Zeng J; Wen J; Yi B; Ma C; Tu J; Fu T; Shen J
    Sci Rep; 2019 Aug; 9(1):12201. PubMed ID: 31434948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.
    Schiessl S; Iniguez-Luy F; Qian W; Snowdon RJ
    BMC Genomics; 2015 Sep; 16():737. PubMed ID: 26419915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.).
    Shah S; Karunarathna NL; Jung C; Emrani N
    BMC Plant Biol; 2018 Dec; 18(1):380. PubMed ID: 30594150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L.
    Li J; Duan Y; Sun N; Wang L; Feng S; Fang Y; Wang Y
    Plant Sci; 2021 Dec; 313():111062. PubMed ID: 34763855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and systemic responses conferring acclimation of Brassica napus roots to low phosphorus conditions.
    Li Y; Yang X; Liu H; Wang W; Wang C; Ding G; Xu F; Wang S; Cai H; Hammond JP; White PJ; Shabala S; Yu M; Shi L
    J Exp Bot; 2022 Aug; 73(14):4753-4777. PubMed ID: 35511123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus.
    Fu Y; Mason AS; Zhang Y; Lin B; Xiao M; Fu D; Yu H
    BMC Plant Biol; 2019 Dec; 19(1):570. PubMed ID: 31856702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis.
    Ren F; Zhao CZ; Liu CS; Huang KL; Guo QQ; Chang LL; Xiong H; Li XB
    Plant Mol Biol; 2014 Dec; 86(6):595-607. PubMed ID: 25194430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of a Phosphate Starvation Response AP2/ERF Gene From Physic Nut in Arabidopsis Alters Root Morphological Traits and Phosphate Starvation-Induced Anthocyanin Accumulation.
    Chen Y; Wu P; Zhao Q; Tang Y; Chen Y; Li M; Jiang H; Wu G
    Front Plant Sci; 2018; 9():1186. PubMed ID: 30177937
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Liu T; Li Y; Wang C; Zhang D; Liu J; He M; Chen M; Guo Y
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes.
    Li Q; Yin M; Li Y; Fan C; Yang Q; Wu J; Zhang C; Wang H; Zhou Y
    J Exp Bot; 2015 Sep; 66(19):5821-36. PubMed ID: 26071533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trade-offs between root-secreted acid phosphatase and root morphology traits, and their contribution to phosphorus acquisition in Brassica napus.
    Li H; Wang C; Zhang B; Liu H; Hammond JP; Wang X; Ding G; Cai H; Wang S; Xu F; Shi L
    Physiol Plant; 2024; 176(2):e14247. PubMed ID: 38499953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant.
    Belimov AA; Safronova VI; Mimura T
    Can J Microbiol; 2002 Mar; 48(3):189-99. PubMed ID: 11989762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.