BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36836838)

  • 1. Investigating the Mechanisms Underlying the Low Irradiance-Tolerance of the Economically Important Seaweed Species
    Ji D; Zhang Y; Zhang B; Xu Y; Xu K; Chen C; Xie C
    Life (Basel); 2023 Feb; 13(2):. PubMed ID: 36836838
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions.
    Wang W; Xu Y; Chen T; Xing L; Xu K; Xu Y; Ji D; Chen C; Xie C
    Sci Total Environ; 2019 Apr; 662():168-179. PubMed ID: 30690352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.
    Wang W; Teng F; Lin Y; Ji D; Xu Y; Chen C; Xie C
    PLoS One; 2018; 13(4):e0195842. PubMed ID: 29694388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of benthic and planktonic diatoms on the growth and biochemical composition of the commercial macroalga Pyropia haitanensis.
    Patil V; Sun L; Mohite V; Liang J; Wang D; Gao Y; Chen C
    Mar Pollut Bull; 2024 Jun; 203():116411. PubMed ID: 38733890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation.
    Shi J; Wang W; Lin Y; Xu K; Xu Y; Ji D; Chen C; Xie C
    BMC Plant Biol; 2019 Nov; 19(1):475. PubMed ID: 31694541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.
    Wang L; Mao Y; Kong F; Li G; Ma F; Zhang B; Sun P; Bi G; Zhang F; Xue H; Cao M
    PLoS One; 2013; 8(5):e65902. PubMed ID: 23734264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allelopathic inhibitory effect of the macroalga Pyropia haitanensis (Rhodophyta) on harmful bloom-forming Pseudo-nitzschia species.
    Patil V; Abate R; Wu W; Zhang J; Lin H; Chen C; Liang J; Sun L; Li X; Li Y; Gao Y
    Mar Pollut Bull; 2020 Dec; 161(Pt A):111752. PubMed ID: 33091839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Quantitative Proteomics Reveals the Desiccation Stress Responses of the Intertidal Seaweed NEOPORPHYRA haitanensis.
    Wang D; You W; Chen N; Cao M; Tang X; Guan X; Qu W; Chen R; Mao Y; Poetsch A
    J Phycol; 2020 Dec; 56(6):1664-1675. PubMed ID: 33460107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between nitrogen and phosphorus modulate the food quality of the marine crop Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis).
    Xu N; Xu K; Xu Y; Ji D; Wang W; Xie C
    Food Chem; 2024 Aug; 448():138973. PubMed ID: 38522292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of elevated atmospheric CO
    Ma H; Zou D; Wen J; Ji Z; Gong J; Liu C
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33361-33369. PubMed ID: 30259325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers.
    Xie C; Li B; Xu Y; Ji D; Chen C
    BMC Genomics; 2013 Feb; 14():107. PubMed ID: 23414227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental heterogeneity caused by large-scale cultivation of Pyropia haitanensis shapes multi-group biodiversity distribution in coastal areas.
    Li Z; Xu K; Meng M; Xu Y; Ji D; Wang W; Xie C
    Sci Total Environ; 2024 Jun; 931():172692. PubMed ID: 38663622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenome-Assembled Genomes From
    Wang J; Tang X; Mo Z; Mao Y
    Front Microbiol; 2022; 13():857901. PubMed ID: 35401438
    [No Abstract]   [Full Text] [Related]  

  • 15. Glycerol-3-phosphate metabolism plays a role in stress response in the red alga Pyropia haitanensis.
    Lai XJ; Yang R; Luo QJ; Chen JJ; Chen HM; Yan XJ
    J Phycol; 2015 Apr; 51(2):321-31. PubMed ID: 26986527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis.
    Zhu S; Gu D; Lu C; Zhang C; Chen J; Yang R; Luo Q; Wang T; Zhang P; Chen H
    BMC Plant Biol; 2022 Mar; 22(1):114. PubMed ID: 35287582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of inorganic carbon supplies and light on photosynthetic functions of Pyropia haitanensis.].
    Jiang H; Zou DH; Lou WY
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):515-521. PubMed ID: 29692066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.
    Xu J; Gao K
    Photochem Photobiol; 2015 Nov; 91(6):1376-81. PubMed ID: 26384590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Co-expression Network Analysis Identifies Key Genes Regulating Conchosporangia Maturation of
    Lin Y; Xu K; Xu Y; Ji D; Chen C; Wang W; Xie C
    Front Genet; 2021; 12():680120. PubMed ID: 34276783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).
    Wu H
    Biomed Res Int; 2016; 2016():7383918. PubMed ID: 27642603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.