These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36836967)

  • 1. The Influence of Fly Ash on the Tensile Creep Prediction of High-Strength Concrete at Early Ages.
    Yao J; Yao S; Huang S; Ni T; Jiang C; Yang Y; Kong D
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling.
    Qu Z; Liu Z; Si R; Zhang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selected Strength Properties of Coal Bottom Ash (CBA) Concrete Containing Fly Ash under Different Curing and Drying Conditions.
    Park JH; Bui QT; Jung SH; Yang IH
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder.
    Woyciechowski P; Woliński P; Adamczewski G
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile Creep Model of Slab Concrete Based on Microprestress-Solidification Theory.
    Zhao Z; Zhang H; Fang B; Sun Y; Zhong Y; Shi T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Prediction Models of Tensile Strength and Reinforcement-Concrete Bond Strength of Low-Calcium Fly Ash Geopolymer Concrete.
    Luan C; Wang Q; Yang F; Zhang K; Utashev N; Dai J; Shi X
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33809247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Fly Ash Additive on the Properties of Concrete with Slag Cement.
    Szcześniak A; Zychowicz J; Stolarski A
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Effect of Fly Ash on Hydration Characterization in Self-Compacting Concrete (SCC) at Very Early Ages Using Piezoceramic Transducers.
    Zheng Y; Chen D; Zhou L; Huo L; Ma H; Song G
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.
    Yoshitake I; Ishida T; Fukumoto S
    Materials (Basel); 2015 Aug; 8(8):5479-5489. PubMed ID: 28793518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on durability improvement of fly ash concrete with durability improving admixture.
    Quan HZ; Kasami H
    ScientificWorldJournal; 2014; 2014():818103. PubMed ID: 25013870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiological and material characterization of high volume fly ash concrete.
    Ignjatović I; Sas Z; Dragaš J; Somlai J; Kovács T
    J Environ Radioact; 2017 Mar; 168():38-45. PubMed ID: 27400654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Compressive Strength of Concrete Containing Binary Supplementary Cementitious Material Using Machine Learning Approach.
    Moradi N; Tavana MH; Habibi MR; Amiri M; Moradi MJ; Farhangi V
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Elevated Temperature on Mechanical Properties of High-Volume Fly Ash-Based Geopolymer Concrete, Mortar and Paste Cured at Room Temperature.
    Zhao J; Wang K; Wang S; Wang Z; Yang Z; Shumuye ED; Gong X
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34063268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the Compressive Strength of Concrete Containing Fly Ash and Rice Husk Ash Using ANN and GEP Models.
    Al-Hashem MN; Amin MN; Raheel M; Khan K; Alkadhim HA; Imran M; Ullah S; Iqbal M
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Study of Experimental and Modeling of Fly Ash-Based Concrete.
    Khan K; Ahmad A; Amin MN; Ahmad W; Nazar S; Arab AMA
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties and Axial Compression Deformation Property of Steel Fiber Reinforced Self-Compacting Concrete Containing High Level Fly Ash.
    Liu P; Hai R; Liu J; Huang Z
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.