These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36837007)
1. Effect of Heat Treatment on Creep Deformation and Fracture Properties for a Coarse-Grained Inconel 718 Manufactured by Directed Energy Deposition. Li Y; Podaný P; Koukolíková M; Džugan J; Krajňák T; Veselý J; Raghavan S Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837007 [TBL] [Abstract][Full Text] [Related]
2. Influence of Different Build Orientations and Heat Treatments on the Creep Properties of Inconel 718 Produced by PBF-LB. Kaletsch A; Qin S; Broeckmann C Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297221 [TBL] [Abstract][Full Text] [Related]
3. Unusually high room and elevated-temperature tensile properties observed in direct aged wire-arc directed energy deposited Inconel 718. Song J; Jimenez XA; Russell C; To AC; Fu Y Sci Rep; 2023 Nov; 13(1):19235. PubMed ID: 37932433 [TBL] [Abstract][Full Text] [Related]
4. Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion. Fayed EM; Saadati M; Shahriari D; Brailovski V; Jahazi M; Medraj M Sci Rep; 2021 Jan; 11(1):2020. PubMed ID: 33479475 [TBL] [Abstract][Full Text] [Related]
5. Influence of Homogenization and Solution Treatments Time on the Microstructure and Hardness of Inconel 718 Fabricated by Laser Powder Bed Fusion Process. Fayed EM; Shahriari D; Saadati M; Brailovski V; Jahazi M; Medraj M Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32516909 [TBL] [Abstract][Full Text] [Related]
6. Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition. Zhang G; Liu W; Zhang P; Xiong H; Gao J; Yu H; Yuan H Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591444 [TBL] [Abstract][Full Text] [Related]
7. Effects of the γ″-Ni Ling LS; Yin Z; Hu Z; Liang JH; Wang ZY; Wang J; Sun BD Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906136 [TBL] [Abstract][Full Text] [Related]
8. Microstructures and High-Temperature Mechanical Properties of Inconel 718 Superalloy Fabricated via Laser Powder Bed Fusion. Li N; Wang C; Li C Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124399 [TBL] [Abstract][Full Text] [Related]
9. In Envelope Additive/Subtractive Manufacturing and Thermal Post-Processing of Inconel 718. Atabay SE; Wanjara P; Bernier F; Sarafan S; Gholipour J; Soost J; Amos R; Patnaik P; Brochu M Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614340 [TBL] [Abstract][Full Text] [Related]
10. The Effect of Post-Processes on the Microstructure and Creep Properties of Alloy718 Built Up by Selective Laser Melting. Kuo YL; Nagahari T; Kakehi K Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895773 [TBL] [Abstract][Full Text] [Related]
11. Achieving High Strength and Creep Resistance in Inconel 740H Superalloy through Wire-Arc Additive Manufacturing and Thermodynamic-Guided Heat Treatment. Sridar S; Ladinos Pizano LF; Klecka MA; Xiong W Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834525 [TBL] [Abstract][Full Text] [Related]
12. Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding. Kral P; Dvorak J; Sklenicka V; Horita Z; Takizawa Y; Tang Y; Kral L; Kvapilova M; Roupcová P; Horvath J Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009477 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Mechanical Properties of the Spark Plasma Sintered Inconel 718 Alloy by Controlling the Nano-Scale Precipitations. Yan S; Wang Y; Wang Q; Zhang C; Chen D; Cui G Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614912 [TBL] [Abstract][Full Text] [Related]
14. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C. Xu L; He Y; Kang Y; Jung JS; Shin K Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827 [TBL] [Abstract][Full Text] [Related]
15. Effects of T5 Treatment on Microstructure and Mechanical Properties at Elevated Temperature of AZ80-Ag Alloy. Zeng G; Liu C; Gao Y; Jiang S; Yu S; Chen Z Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31575063 [TBL] [Abstract][Full Text] [Related]
16. Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti Hemes S; Meiners F; Sizova I; Hama-Saleh R; Röhrens D; Weisheit A; Häfner CL; Bambach M Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671719 [TBL] [Abstract][Full Text] [Related]
17. Ambient-temperature time-dependent deformation of cast and additive manufactured Al-Cu-Mg-Ag-TiB Shakil SI; Zoeram AS; Avateffazeli M; Roscher M; Pirgazi H; Shalchi-Amirkhiz B; Poorganji B; Mohammadi M; Haghshenas M Micron; 2022 May; 156():103246. PubMed ID: 35316740 [TBL] [Abstract][Full Text] [Related]
18. Data on the effect of NbC inoculants on the elastic and microstructural evolution of LBP-DED IN718. Markanday JFS; Carpenter MA; Thompson RP; Jones NG; Christofidou KA; Fairclough SM; Heason CP; Stone HJ Data Brief; 2023 Jun; 48():109299. PubMed ID: 37383803 [TBL] [Abstract][Full Text] [Related]
19. Transmission electron microscopy of precipitation in fine-grained heat-affected zone of Grade91 steel weld during creep exposure. Peansukmanee S; Phung-On I; Poopat B; Pearce JTH; Tsuda K; Nusen S; Chairuangsri T Micron; 2022 Apr; 155():103216. PubMed ID: 35123162 [TBL] [Abstract][Full Text] [Related]
20. Determining the Effects of Inter-Layer Time Interval in Powder-Fed Laser-Directed Energy Deposition on the Microstructure of Inconel 718 via In Situ Thermal Monitoring. Handler E; Yadollahi A; Liu Y; Thompson SM Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]