These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 36837059)
1. Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites-A Review. Cui D; Wang R; Qian C; Shen H; Xia J; Sun K; Liu H; Guo C; Li J; Yu F; Bao W Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837059 [TBL] [Abstract][Full Text] [Related]
2. Advance of Prussian Blue-Derived Nanohybrids in Energy Storage: Current Status and Perspective. Wang R; Qian C; Zhang Z; Shen H; Xia J; Cui D; Sun K; Liu H; Guo C; Yu F; Li J; Bao W Small; 2023 Apr; 19(14):e2206848. PubMed ID: 36604991 [TBL] [Abstract][Full Text] [Related]
3. Energy storage materials derived from Prussian blue analogues. Ma F; Li Q; Wang T; Zhang H; Wu G Sci Bull (Beijing); 2017 Mar; 62(5):358-368. PubMed ID: 36659421 [TBL] [Abstract][Full Text] [Related]
4. Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Song X; Song S; Wang D; Zhang H Small Methods; 2021 Apr; 5(4):e2001000. PubMed ID: 34927855 [TBL] [Abstract][Full Text] [Related]
5. Prussian Blue Analogues for Sodium-Ion Battery Cathodes: A Review of Mechanistic Insights, Current Challenges, and Future Pathways. Xiao Y; Xiao J; Zhao H; Li J; Zhang G; Zhang D; Guo X; Gao H; Wang Y; Chen J; Wang G; Liu H Small; 2024 Aug; 20(35):e2401957. PubMed ID: 38682730 [TBL] [Abstract][Full Text] [Related]
6. Effect of particle dispersion on electrochemical performance of Prussian blue analogues electrode materials for sodium ion batteries. Chen WC; Li SJ; Xu HY; Xu SH; Fei GT Chemphyschem; 2024 Mar; 25(5):e202300960. PubMed ID: 38179835 [TBL] [Abstract][Full Text] [Related]
7. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. Peng J; Zhang W; Liu Q; Wang J; Chou S; Liu H; Dou S Adv Mater; 2022 Apr; 34(15):e2108384. PubMed ID: 34918850 [TBL] [Abstract][Full Text] [Related]
8. Low-cost Prussian blue analogues for sodium-ion batteries and other metal-ion batteries. Huang JQ; Du R; Zhang H; Liu Y; Chen J; Liu YJ; Li L; Peng J; Qiao Y; Chou SL Chem Commun (Camb); 2023 Jul; 59(61):9320-9335. PubMed ID: 37440172 [TBL] [Abstract][Full Text] [Related]
9. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
10. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516 [TBL] [Abstract][Full Text] [Related]
11. Prussian Blue Analogs for Rechargeable Batteries. Wang B; Han Y; Wang X; Bahlawane N; Pan H; Yan M; Jiang Y iScience; 2018 May; 3():110-133. PubMed ID: 30428315 [TBL] [Abstract][Full Text] [Related]
12. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Li WJ; Han C; Cheng G; Chou SL; Liu HK; Dou SX Small; 2019 Aug; 15(32):e1900470. PubMed ID: 30977287 [TBL] [Abstract][Full Text] [Related]
13. Hotspots analysis and perspectives of Prussian blue analogues (PBAs) in environment and energy in recent 20 years by CiteSpace. Du X; Hou Y Environ Sci Pollut Res Int; 2023 Jan; 30(5):11141-11174. PubMed ID: 36508097 [TBL] [Abstract][Full Text] [Related]
14. Element screening of metal sites in Fe-based Prussian blue framework materials for ammonium ion battery applications: a first-principles study. Zhang Y; Xing J; Zhang B; Tong L; Fu X Phys Chem Chem Phys; 2024 Jan; 26(3):2387-2394. PubMed ID: 38168687 [TBL] [Abstract][Full Text] [Related]
15. Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Peng J; Zhang W; Hu Z; Zhao L; Wu C; Peleckis G; Gu Q; Wang JZ; Liu HK; Dou SX; Chou S Nano Lett; 2022 Feb; 22(3):1302-1310. PubMed ID: 35089723 [TBL] [Abstract][Full Text] [Related]
16. Surface Modification of Silicon Nanoparticles by an "Ink" Layer for Advanced Lithium Ion Batteries. Wu F; Wang H; Shi J; Yan Z; Song S; Peng B; Zhang X; Xiang Y ACS Appl Mater Interfaces; 2018 Jun; 10(23):19639-19648. PubMed ID: 29790742 [TBL] [Abstract][Full Text] [Related]
17. From lab to field: Prussian blue frameworks as sustainable cathode materials. Anil Kumar Y; Sana SS; Ramachandran T; Assiri MA; Srinivasa Rao S; Kim SC Dalton Trans; 2024 Jul; 53(26):10770-10804. PubMed ID: 38859722 [TBL] [Abstract][Full Text] [Related]
18. Freestanding Ti Wang S; Li Z; Wang G; Wang Y; Ling Z; Li C ACS Nano; 2022 Jan; 16(1):1239-1249. PubMed ID: 34941266 [TBL] [Abstract][Full Text] [Related]
19. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618 [TBL] [Abstract][Full Text] [Related]
20. Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination. Gong A; Zhao Y; Liang B; Li K J Colloid Interface Sci; 2022 Jan; 605():432-440. PubMed ID: 34332416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]