These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36837256)

  • 21. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.
    Ohno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051603. PubMed ID: 23214789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusionless (chemically partitionless) crystallization and subsequent decomposition of supersaturated solid solutions in Sn-Bi eutectic alloy.
    Gusakova OV; Galenko PK; Shepelevich VG; Alexandrov DV; Rettenmayr M
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180204. PubMed ID: 30827216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CA Modeling of Microsegregation and Growth of Equiaxed Dendrites in the Binary Al-Mg Alloy.
    Zyska A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study.
    Yang X; Zhang L; Sobolev S; Du Y
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. XRISE-M: X-radiography facility for solidification and diffusion studies of alloys aboard sounding rockets.
    Kargl F; Drescher J; Dreißigacker C; Balter M; Becker M; Wegener M; Sondermann E
    Rev Sci Instrum; 2020 Jan; 91(1):013906. PubMed ID: 32012603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear morphological stability analysis of the solid-liquid interface in rapid solidification of a binary system.
    Galenko PK; Danilov DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051608. PubMed ID: 15244830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties.
    Trevisan F; Calignano F; Lorusso M; Pakkanen J; Aversa A; Ambrosio EP; Lombardi M; Fino P; Manfredi D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter.
    Peng Q; Yang B; Milkereit B; Liu D; Springer A; Rettenmayr M; Schick C; Keßler O
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Capillary-wave model for the solidification of dilute binary alloys.
    Korzhenevskii AL; Bausch R; Schmitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041609. PubMed ID: 21599177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing of high-strength aluminium alloys.
    Martin JH; Yahata BD; Hundley JM; Mayer JA; Schaedler TA; Pollock TM
    Nature; 2017 Sep; 549(7672):365-369. PubMed ID: 28933439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of solidification texture during additive manufacturing.
    Wei HL; Mazumder J; DebRoy T
    Sci Rep; 2015 Nov; 5():16446. PubMed ID: 26553246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the Platform for Three-Dimensional Simulation of Additive Layer Manufacturing Processes Characterized by Changes in State of Matter: Melting-Solidification.
    Svyetlichnyy DS
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alloy Design, Thermodynamics, and Electron Microscopy of Ternary Ti-Ag-Nb Alloy with Liquid Phase Separation.
    Nagase T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy.
    Liu T; Tao J; Cai X; Chen D; Li J; Luo L; Cheng Z; Su Y
    Heliyon; 2022 Jan; 8(1):e08704. PubMed ID: 35028474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach.
    Sharma SK; Grewal HS; Saxena KK; Mohammed KA; Prakash C; Davim JP; Buddhi D; Raju R; Mohan DG; Tomków J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative phase field simulations of polycrystalline solidification using a vector order parameter.
    Pinomaa T; Ofori-Opoku N; Laukkanen A; Provatas N
    Phys Rev E; 2021 May; 103(5-1):053310. PubMed ID: 34134205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Onsager approach to the one-dimensional solidification problem and its relation to the phase-field description.
    Brener EA; Temkin DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031601. PubMed ID: 22587102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. X-ray Imaging of Alloy Solidification: Crystal Formation, Growth, Instability and Defects.
    Feng S; Liotti E; Grant PS
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser Operating Windows Prediction in Selective Laser-Melting Processing of Metallic Powders: Development and Validation of a Computational Fluid Dynamics-Based Model.
    Ridolfi MR; Folgarait P; Di Schino A
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32245059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.