These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 36837451)
1. The Possibilities of Personalized 3D Printed Implants-A Case Series Study. Safali S; Berk T; Makelov B; Acar MA; Gueorguiev B; Pape HC Medicina (Kaunas); 2023 Jan; 59(2):. PubMed ID: 36837451 [No Abstract] [Full Text] [Related]
2. Analysis of principles inspiring design of three-dimensional-printed custom-made prostheses in two referral centres. Angelini A; Kotrych D; Trovarelli G; Szafrański A; Bohatyrewicz A; Ruggieri P Int Orthop; 2020 May; 44(5):829-837. PubMed ID: 32170471 [TBL] [Abstract][Full Text] [Related]
3. Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection. Xu L; Qin H; Tan J; Cheng Z; Luo X; Tan H; Huang W J Orthop Translat; 2021 Jul; 29():163-169. PubMed ID: 34277347 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of massive bone defects after femoral tumor resection using two new-designed 3D-printed intercalary prostheses: a clinical analytic study with the cooperative utilization of multiple technologies. Shao X; Dou M; Yang Q; Li J; Zhang A; Yao Y; Chu Q; Li K; Li Z BMC Musculoskelet Disord; 2023 Jan; 24(1):67. PubMed ID: 36698116 [TBL] [Abstract][Full Text] [Related]
5. A preliminary study of the mechanical properties of 3D-printed personalized mesh titanium alloy prostheses and repair of hemi-mandibular defect in dogs. Zhao B; Wang H; Liu C; Liu H; Zhao X; Sun Z; Hu M J Biomed Mater Res B Appl Biomater; 2024 Sep; 112(9):e35466. PubMed ID: 39223742 [TBL] [Abstract][Full Text] [Related]
6. 3D-Printed Personalized Lattice Implant as an Innovative Strategy to Reconstruct Geographic Defects in Load-Bearing Bones. Li Z; Lu M; Zhang Y; Wang J; Wang Y; Gong T; He X; Luo Y; Zhou Y; Min L; Tu C Orthop Surg; 2024 Apr; 16(4):821-829. PubMed ID: 38296795 [TBL] [Abstract][Full Text] [Related]
7. On the need of a scale-dependent material characterization to describe the mechanical behavior of 3D printed Ti6Al4V custom prostheses using finite element models. Danielli F; Ciriello L; La Barbera L; Rodriguez Matas JF; Pennati G J Mech Behav Biomed Mater; 2023 Apr; 140():105707. PubMed ID: 36801786 [TBL] [Abstract][Full Text] [Related]
8. Sterility of 3D-Printed Orthopedic Implants Using Fused Deposition Modeling. Skelley NW; Hagerty MP; Stannard JT; Feltz KP; Ma R Orthopedics; 2020 Jan; 43(1):46-51. PubMed ID: 31693742 [TBL] [Abstract][Full Text] [Related]
9. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Jing Z; Zhang T; Xiu P; Cai H; Wei Q; Fan D; Lin X; Song C; Liu Z Biomed Mater; 2020 Aug; 15(5):052003. PubMed ID: 32369792 [TBL] [Abstract][Full Text] [Related]
10. Active Materials for 3D Printing in Small Animals: Current Modalities and Future Directions for Orthopedic Applications. Memarian P; Pishavar E; Zanotti F; Trentini M; Camponogara F; Soliani E; Gargiulo P; Isola M; Zavan B Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162968 [TBL] [Abstract][Full Text] [Related]
11. 3D-printed patient-specific applications in orthopedics. Wong KC Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470 [TBL] [Abstract][Full Text] [Related]
12. Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series. Jovičić MŠ; Vuletić F; Ribičić T; Šimunić S; Petrović T; Kolundžić R Int Orthop; 2021 Apr; 45(4):1079-1085. PubMed ID: 32901331 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of Bony Defects after Tumor Resection with 3D-Printed Anatomically Conforming Pelvic Prostheses through a Novel Treatment Strategy. Peng W; Zheng R; Wang H; Huang X Biomed Res Int; 2020; 2020():8513070. PubMed ID: 33335928 [TBL] [Abstract][Full Text] [Related]
14. Outcomes of Surgical Reconstruction Using Custom 3D-Printed Porous Titanium Implants for Critical-Sized Bone Defects of the Foot and Ankle. Abar B; Kwon N; Allen NB; Lau T; Johnson LG; Gall K; Adams SB Foot Ankle Int; 2022 Jun; 43(6):750-761. PubMed ID: 35209733 [TBL] [Abstract][Full Text] [Related]
15. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine; 2017 Apr; 26(4):513-518. PubMed ID: 28106524 [TBL] [Abstract][Full Text] [Related]
16. Treatment of comminuted radial head fractures with personalized radial head prosthesis produced with 3-dimensional printing technology. Safali S; Eravsar E; Özdemir A; Çiftci S; Ertaş ES; Aydın BK; Acar MA J Shoulder Elbow Surg; 2023 Mar; 32(3):463-474. PubMed ID: 36403925 [TBL] [Abstract][Full Text] [Related]
17. Immediate Teeth in Fibulas: Planning and Digital Workflow With Point-of-Care 3D Printing. Williams FC; Hammer DA; Wentland TR; Kim RY J Oral Maxillofac Surg; 2020 Aug; 78(8):1320-1327. PubMed ID: 32404269 [TBL] [Abstract][Full Text] [Related]
18. Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Dekker TJ; Steele JR; Federer AE; Hamid KS; Adams SB Foot Ankle Int; 2018 Aug; 39(8):916-921. PubMed ID: 29648876 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Wang B; Hao Y; Pu F; Jiang W; Shao Z Int Orthop; 2018 Mar; 42(3):687-694. PubMed ID: 28956108 [TBL] [Abstract][Full Text] [Related]
20. What are the Complications of Three-dimensionally Printed, Custom-made, Integrative Hemipelvic Endoprostheses in Patients with Primary Malignancies Involving the Acetabulum, and What is the Function of These Patients? Wang J; Min L; Lu M; Zhang Y; Wang Y; Luo Y; Zhou Y; Duan H; Tu C Clin Orthop Relat Res; 2020 Nov; 478(11):2487-2501. PubMed ID: 32420722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]