These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36837667)

  • 1. Membranes for Osmotic Power Generation by Reverse Electrodialysis.
    Rahman MM
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Membranes for Osmotic Power Generation.
    Chu CW; Fauziah AR; Yeh LH
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303582. PubMed ID: 37010943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X; Liu S; Crittenden J; Chen Y
    ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C
    Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion.
    Zeng H; Yao C; Wu C; Wang D; Ma W; Wang J
    Small; 2024 Jun; 20(26):e2310811. PubMed ID: 38299466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis.
    Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA
    Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport.
    Zhang K; Wu H; Zhang X; Dong H; Chen S; Xu Y; Xu F
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129461. PubMed ID: 38237827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack.
    Sugimoto Y; Ujike R; Higa M; Kakihana Y; Higa M
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalability of nanopore osmotic energy conversion.
    Tsutsui M; Hsu WL; Yokota K; Leong IW; Daiguji H; Kawai T
    Exploration (Beijing); 2024 Apr; 4(2):20220110. PubMed ID: 38855615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.
    Guler E; Zhang Y; Saakes M; Nijmeijer K
    ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis.
    Villafaña-López L; Reyes-Valadez DM; González-Vargas OA; Suárez-Toriello VA; Jaime-Ferrer JS
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31689967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Solar-osmotic Power Generation from Bioinspired Anti-fouling 2D WS
    Wang Q; Wu Y; Zhu C; Hu Y; Fu L; Qian Y; Zhang ZH; Li T; Li X; Kong XY; Jiang L; Zhang Z; Wen L
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202302938. PubMed ID: 37029469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes.
    Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.