These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36837678)

  • 1. A Modern Computer Application to Model Rare Earth Element Ion Behavior in Adsorptive Membranes and Materials.
    Rybak A; Rybak A; Kolev SD
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern Rare Earth Imprinted Membranes for the Recovery of Rare Earth Metal Ions from Coal Fly Ash Extracts.
    Rybak A; Rybak A; Boncel S; Kolanowska A; Jakóbik-Kolon A; Bok-Badura J; Kaszuwara W
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental studies of novel zwitterionic hybrid membranes: kinetic model and mechanism insights into strontium removal.
    Zhu W; Liu J; Li M
    ScientificWorldJournal; 2014; 2014():485820. PubMed ID: 25405224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.
    Skodras G; Diamantopoulou I; Pantoleontos G; Sakellaropoulos GP
    J Hazard Mater; 2008 Oct; 158(1):1-13. PubMed ID: 18321645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics.
    Li S; Zeng Z; Xue W
    Environ Technol; 2019 Jun; 40(14):1810-1820. PubMed ID: 29345525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.
    Taggart RK; Hower JC; Dwyer GS; Hsu-Kim H
    Environ Sci Technol; 2016 Jun; 50(11):5919-26. PubMed ID: 27228215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and dynamic studies of lanthanum(III) ion adsorption/desorption from acidic solutions using chelating ion exchangers with different functionalities.
    Kołodyńska D; Fila D; Hubicki Z
    Environ Res; 2020 Dec; 191():110171. PubMed ID: 32919960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel multifunctional ion exchangers for metal ions removal in the presence of citric acid.
    Araucz K; Aurich A; Kołodyńska D
    Chemosphere; 2020 Jul; 251():126331. PubMed ID: 32145572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of adsorption flux in nickel-contaminated synthetic simulated wastewater in the batch reactor.
    Singh J; Mishra V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(9):1059-1069. PubMed ID: 32532180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of phosphate onto lanthanum-doped coal fly ash-Blast furnace cement composite.
    Asaoka S; Kawakami K; Saito H; Ichinari T; Nohara H; Oikawa T
    J Hazard Mater; 2021 Mar; 406():124780. PubMed ID: 33385762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the sorption mechanisms of metal-complexed dye onto Posidonia oceanica (L.) fibres through kinetic modelling analysis.
    Ncibi MC; Mahjoub B; Seffen M
    Bioresour Technol; 2008 Sep; 99(13):5582-9. PubMed ID: 18055197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption kinetics of diuron on volcanic ash derived soils.
    Cáceres-Jensen L; Rodríguez-Becerra J; Parra-Rivero J; Escudey M; Barrientos L; Castro-Castillo V
    J Hazard Mater; 2013 Oct; 261():602-13. PubMed ID: 23995557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: equilibrium and kinetic studies.
    Nethaji S; Sivasamy A
    Chemosphere; 2011 Mar; 82(10):1367-72. PubMed ID: 21176940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism.
    Dotto GL; Pinto LA
    J Hazard Mater; 2011 Mar; 187(1-3):164-70. PubMed ID: 21255919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study.
    Han R; Zou W; Zhang Z; Shi J; Yang J
    J Hazard Mater; 2006 Sep; 137(1):384-95. PubMed ID: 16603312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils.
    Filipe OM; Costa CA; Vidal MM; Santos EB
    Chemosphere; 2013 Jan; 90(2):432-40. PubMed ID: 22951356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of aqueous neodymium, europium, gadolinium, terbium, and yttrium ions onto nZVI-montmorillonite: kinetics, thermodynamic mechanism, and the influence of coexisting ions.
    Wang J
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33521-33537. PubMed ID: 30267348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modelling of cytochrome c adsorption on SBA-15.
    Yokogawa Y; Yamauchi R; Saito A; Yamato Y; Toma T
    Biomed Mater Eng; 2017; 28(1):37-46. PubMed ID: 28269743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.
    Karaca S; Gürses A; Ejder M; Açikyildiz M
    J Colloid Interface Sci; 2004 Sep; 277(2):257-63. PubMed ID: 15341833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Understandings of Rare Earth Element (REE) Speciation in Coal Fly Ashes and Implication for REE Extractability.
    Liu P; Huang R; Tang Y
    Environ Sci Technol; 2019 May; 53(9):5369-5377. PubMed ID: 30912650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.