These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36838017)

  • 1. Biomechanical Assessment of Red Blood Cells in Pulsatile Blood Flows.
    Kang YJ
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation of Air Compliance Effect on Measurement of Mechanical Properties of Blood Sample Flowing in Microfluidic Channels.
    Kang YJ
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood rheometer based on microflow manipulation of continuous blood flows using push-and-back mechanism.
    Kang YJ
    Anal Methods; 2021 Oct; 13(41):4871-4883. PubMed ID: 34586112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows.
    Kang YJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential quantification of blood and diluent using red cell sedimentation-based separation and pressure-induced work in a microfluidic channel.
    Kang YJ
    Anal Methods; 2022 Mar; 14(12):1194-1207. PubMed ID: 35234222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of erythrocyte deformability and blood viscoelasticity using micropillars and co-flowing streams under pulsatile blood flows.
    Kang YJ
    Biomicrofluidics; 2017 Jan; 11(1):014102. PubMed ID: 28798838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurement of blood pressure and RBC aggregation by monitoring on-off blood flows supplied from a disposable air-compressed pump.
    Kang YJ
    Analyst; 2019 Jun; 144(11):3556-3566. PubMed ID: 31050348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Viscoelasticity Measurement Using Interface Variations in Coflowing Streams under Pulsatile Blood Flows.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel.
    Jun Kang Y; Lee SJ
    Biomicrofluidics; 2013; 7(5):54122. PubMed ID: 24396531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform under
    Kang YJ
    Biomicrofluidics; 2018 Mar; 12(2):024116. PubMed ID: 29682144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous and simultaneous measurement of the biophysical properties of blood in a microfluidic environment.
    Kang YJ
    Analyst; 2016 Nov; 141(24):6583-6597. PubMed ID: 27858002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of Red Blood Cell Sedimentation in a Driving Syringe to Blood Flow in Capillary Channels.
    Kang YJ
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Blood Biophysical Properties Using Pressure Sensing with Micropump and Microfluidic Comparator.
    Kang YJ
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensing of Haemorheological Properties Using Microblood Flow Manipulation and Quantification.
    Kang YJ
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of erythrocyte aggregation at pulsatile flow conditions with backscattering analysis.
    Nam JH; Xue S; Lim H; Shin S
    Clin Hemorheol Microcirc; 2012; 50(4):257-66. PubMed ID: 22240363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample.
    Kim G; Jeong S; Kang YJ
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.