These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36838106)

  • 1. Optimization of a Screw Centrifugal Blood Pump Based on Random Forest and Multi-Objective Gray Wolf Optimization Algorithm.
    Jing T; Sun H; Cheng J; Zhou L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Objective Genetic Algorithm Assisted by an Artificial Neural Network Metamodel for Shape Optimization of a Centrifugal Blood Pump.
    Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N
    Artif Organs; 2019 May; 43(5):E76-E93. PubMed ID: 30282114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].
    Shou C; Guo Y; Su L; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1260-4. PubMed ID: 25868241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape optimization of a centrifugal blood pump by coupling CFD with metamodel-assisted genetic algorithm.
    Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N
    J Artif Organs; 2019 Mar; 22(1):29-36. PubMed ID: 30311022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on the performance of centrifugal blood pump with superhydrophobic surface.
    Li C; Qiu H; Ma J; Wang Y
    Int J Artif Organs; 2022 Dec; 45(12):1028-1036. PubMed ID: 36028949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD.
    Onder A; Incebay O; Sen MA; Yapici R; Kalyoncu M
    Int J Artif Organs; 2021 Oct; 44(10):765-772. PubMed ID: 34128420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic evaluation and
    Fu M; Liu G; Wang W; Gao B; Ji B; Chang Y; Liu Y
    Ann Transl Med; 2021 Apr; 9(8):679. PubMed ID: 33987377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps.
    He G; Zhang J; Shah A; Berk ZB; Han L; Dong H; Griffith BP; Wu ZJ
    Int J Artif Organs; 2021 Nov; 44(11):829-837. PubMed ID: 34494469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.
    Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A
    Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: A CFD comparative study.
    Chen Z; Jena SK; Giridharan GA; Koenig SC; Slaughter MS; Griffith BP; Wu ZJ
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28859253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal design of the hydrodynamic multi-arc bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level.
    Yasui K; Kosaka R; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Artif Organs; 2013 Sep; 37(9):768-77. PubMed ID: 23980526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis in different centrifugal pumps.
    Kawahito K; Nosé Y
    Artif Organs; 1997 Apr; 21(4):323-6. PubMed ID: 9096806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical assessment of hemodynamic perspectives of a left ventricular assist device and subsequent proposal for improvisation.
    Ray PK; Das AK; Das PK
    Comput Biol Med; 2022 Dec; 151(Pt A):106309. PubMed ID: 36410098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.
    Qian KX
    Med Eng Phys; 1996 Jan; 18(1):57-66. PubMed ID: 8771040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface roughness on hemolysis in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    ASAIO J; 1996; 42(5):M858-62. PubMed ID: 8945006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.