These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36838114)

  • 1. Towards Broadband High-Frequency Vibration Attenuation Using Notched Cross-Shaped Metamaterial.
    Guo J; Zhao R; Shi Y
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Vibration Attenuation Achieved by 2D Elasto-Acoustic Metamaterial Plates with Rainbow Stepped Resonators.
    Wei W; Chronopoulos D; Meng H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ternary Seismic Metamaterial for Low Frequency Vibration Attenuation.
    Chen C; Lei J; Liu Z
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter.
    Muhammad ; Lim CW
    Sci Rep; 2021 Mar; 11(1):7137. PubMed ID: 33785851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metamaterial foundation for seismic wave attenuation for low and wide frequency band.
    Gupta A; Sharma R; Thakur A; Gulia P
    Sci Rep; 2023 Feb; 13(1):2293. PubMed ID: 36759526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency.
    Wang Z; Zhang Q; Zhang K; Hu G
    Adv Mater; 2016 Nov; 28(44):9857-9861. PubMed ID: 27654019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly tunable low frequency metamaterial cavity for vibration localization.
    Park HW; Seung HM; Choi W; Kim M; Oh JH
    Sci Rep; 2022 Jun; 12(1):9714. PubMed ID: 35690621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties.
    Liu J; Li S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure.
    Zhang S; Qian D; Zhang Z; Ge H
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realizing UWB Antenna Array with Dual and Wide Rejection Bands Using Metamaterial and Electromagnetic Bandgaps Techniques.
    Althuwayb AA; Alibakhshikenari M; Virdee BS; Shukla P; Limiti E
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening bandgaps in a multi-resonant piezoelectric metamaterial plate via bandgap merging phenomena.
    Li Y; Liu Z; Zhou H; Yi K; Zhu R
    Sci Rep; 2024 Jul; 14(1):16127. PubMed ID: 38997315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial.
    D'Alessandro L; Ardito R; Braghin F; Corigliano A
    Sci Rep; 2019 May; 9(1):8039. PubMed ID: 31142751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact Multi-Layered Symmetric Metamaterial Design Structure for Microwave Frequency Applications.
    Ramachandran T; Faruque MRI; Singh MSJ; Al-Mugren KS
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Vibration Isolation with Prestressed Resonant Auxetic Metamaterial.
    Pyskir A; Collet M; Dimitrijevic Z; Lamarque CH
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Wide-Band Double-Negative Metamaterial for C- and S-Band Applications.
    Hossain MI; Faruque MRI; Islam MT; Ullah MH
    Materials (Basel); 2014 Dec; 8(1):57-71. PubMed ID: 28787924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstrip Antenna with High Gain and Strong Directivity Loaded with Cascaded Hexagonal Ring-Shaped Metamaterial.
    Cui C; Ren Y; Tao P; Cao B
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration Energy Harvesting from the Subwavelength Interface State of a Topological Metamaterial Beam.
    Lu Y; Wang Z; Zhu X; Hu C; Yang J; Wu Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz metamaterial with broadband and low-dispersion high refractive index.
    Gao X; Yu FL; Cai CL; Guan CY; Shi JH; Hu F
    Opt Lett; 2020 Sep; 45(17):4754-4757. PubMed ID: 32870849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.