These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36838115)
1. Paradigm Changing Integration Technology for the Production of Flexible Electronics by Transferring Structures, Dies and Electrical Components from Rigid to Flexible Substrates. Selbmann F; Paul SD; Satwara M; Roscher F; Wiemer M; Kuhn H; Joseph Y Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838115 [TBL] [Abstract][Full Text] [Related]
2. Multi-project wafers for flexible thin-film electronics by independent foundries. Çeliker H; Dehaene W; Myny K Nature; 2024 May; 629(8011):335-340. PubMed ID: 38658759 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G. Ren Z; Xu J; Le X; Lee C Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442568 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording. Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339 [TBL] [Abstract][Full Text] [Related]
5. High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Wang B; Huang W; Chi L; Al-Hashimi M; Marks TJ; Facchetti A Chem Rev; 2018 Jun; 118(11):5690-5754. PubMed ID: 29785854 [TBL] [Abstract][Full Text] [Related]
9. High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. Dahiya AS; Shakthivel D; Kumaresan Y; Zumeit A; Christou A; Dahiya R Nano Converg; 2020 Oct; 7(1):33. PubMed ID: 33034776 [TBL] [Abstract][Full Text] [Related]
10. Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics. Lee JY; Shin J; Kim K; Ju JE; Dutta A; Kim TS; Cho YU; Kim T; Hu L; Min WK; Jung HS; Park YS; Won SM; Yeo WH; Moon J; Khang DY; Kim HJ; Ahn JH; Cheng H; Yu KJ; Rogers JA Small; 2023 Sep; 19(39):e2302597. PubMed ID: 37246255 [TBL] [Abstract][Full Text] [Related]
16. Transparent Large-Area MoS Kim TY; Ha J; Cho K; Pak J; Seo J; Park J; Kim JK; Chung S; Hong Y; Lee T ACS Nano; 2017 Oct; 11(10):10273-10280. PubMed ID: 28841294 [TBL] [Abstract][Full Text] [Related]
17. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Salvatore GA; Münzenrieder N; Kinkeldei T; Petti L; Zysset C; Strebel I; Büthe L; Tröster G Nat Commun; 2014; 5():2982. PubMed ID: 24399363 [TBL] [Abstract][Full Text] [Related]
18. Efficient Multi-Material Structured Thin Film Transfer to Elastomers for Stretchable Electronic Devices. Ding X; Moran-Mirabal JM Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208459 [TBL] [Abstract][Full Text] [Related]
19. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Khan Y; Thielens A; Muin S; Ting J; Baumbauer C; Arias AC Adv Mater; 2020 Apr; 32(15):e1905279. PubMed ID: 31742812 [TBL] [Abstract][Full Text] [Related]
20. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. Ishikawa FN; Chang HK; Ryu K; Chen PC; Badmaev A; Gomez De Arco L; Shen G; Zhou C ACS Nano; 2009 Jan; 3(1):73-9. PubMed ID: 19206251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]