These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36838191)
41. Stretchable piezoelectric nanocomposite generator. Park KI; Jeong CK; Kim NK; Lee KJ Nano Converg; 2016; 3(1):12. PubMed ID: 28191422 [TBL] [Abstract][Full Text] [Related]
42. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics. Maity K; Garain S; Henkel K; Schmeißer D; Mandal D ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939 [TBL] [Abstract][Full Text] [Related]
43. A Self-Powered and Highly Accurate Vibration Sensor Based on Bouncing-Ball Triboelectric Nanogenerator for Intelligent Ship Machinery Monitoring. Du T; Zuo X; Dong F; Li S; Mtui AE; Zou Y; Zhang P; Zhao J; Zhang Y; Sun P; Xu M Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33670080 [TBL] [Abstract][Full Text] [Related]
44. Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z Ann Transl Med; 2021 May; 9(9):800. PubMed ID: 34268413 [TBL] [Abstract][Full Text] [Related]
45. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Hu L; Zhong T; Long Z; Liang S; Xing L; Xue X Nanotechnology; 2023 Feb; 34(19):. PubMed ID: 36745907 [TBL] [Abstract][Full Text] [Related]
46. Development of an Electrostatic Oral Cavity Generator Driven by Occlusal Force. Ichikawa K; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1298-1301. PubMed ID: 31946130 [TBL] [Abstract][Full Text] [Related]
47. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review. Latif R; Noor MM; Yunas J; Hamzah AA Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034 [TBL] [Abstract][Full Text] [Related]
48. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe. Zhou M; Al-Furjan MSH; Wang B Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059 [TBL] [Abstract][Full Text] [Related]
49. Study of the Power Generation Performance of Impact Piezoelectric Energy Capture Devices. Tian X; Liu J; Hou J; Gai H; Yang J; Sun Z Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241636 [TBL] [Abstract][Full Text] [Related]
50. A self-powered and self-monitoring ultra-low frequency wave energy harvester for smart ocean ranches. Peng Y; Tang H; Pan H; Zhang Z; Luo D; Tang M; Kong W; Li Y; Liu G; Hu Y iScience; 2024 Sep; 27(9):110665. PubMed ID: 39262783 [TBL] [Abstract][Full Text] [Related]
51. An Investigation on Energy Harvesting Behavior of an Array Piezoelectric Coupled Disc Damper. Xie X; Huang X; Wang J; Wang Z; Zhou B; Zhang J Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014166 [TBL] [Abstract][Full Text] [Related]
52. High output piezo/triboelectric hybrid generator. Jung WS; Kang MG; Moon HG; Baek SH; Yoon SJ; Wang ZL; Kim SW; Kang CY Sci Rep; 2015 Mar; 5():9309. PubMed ID: 25791299 [TBL] [Abstract][Full Text] [Related]
53. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester. Gupta MK; Kim SW; Kumar B ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739 [TBL] [Abstract][Full Text] [Related]
54. Vibration Characteristics and Experimental Research of Combined Beam Tri-Stable Piezoelectric Energy Harvester. Zhang X; Xu H; Chen X; Zhu F; Guo Y; Tian H Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144088 [TBL] [Abstract][Full Text] [Related]
55. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring. Panayanthatta N; Clementi G; Ouhabaz M; Costanza M; Margueron S; Bartasyte A; Basrour S; Bano E; Montes L; Dehollain C; La Rosa R Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833578 [TBL] [Abstract][Full Text] [Related]
56. Wearable Exoskeleton System for Energy Harvesting and Angle Sensing Based on a Piezoelectric Cantilever Generator Array. Hu B; Xue J; Jiang D; Tan P; Wang Y; Liu M; Yu H; Zou Y; Li Z ACS Appl Mater Interfaces; 2022 Aug; 14(32):36622-36632. PubMed ID: 35924818 [TBL] [Abstract][Full Text] [Related]
57. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester. Aranda JJ; Bader S; Oelmann B Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194 [TBL] [Abstract][Full Text] [Related]
58. Enhancement and Function of the Piezoelectric Effect in Polymer Nanofibers. Persano L; Ghosh SK; Pisignano D Acc Mater Res; 2022 Sep; 3(9):900-912. PubMed ID: 36187876 [TBL] [Abstract][Full Text] [Related]
59. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow. Song R; Hou C; Yang C; Yang X; Guo Q; Shan X Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494 [TBL] [Abstract][Full Text] [Related]
60. Frequency Modulation Approach for High Power Density 100 Hz Piezoelectric Vibration Energy Harvester. Ju D; Wang L; Li C; Huang H; Liu H; Liu K; Wang Q; Han X; Zhao L; Maeda R Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502195 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]