These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 3683851)
1. 'Neurosecretion' by aminergic synaptic terminals in vivo--a study of secretory granule exocytosis in the corpus cardiacum of the flying locust. Pow DV; Golding DW Neuroscience; 1987 Sep; 22(3):1145-9. PubMed ID: 3683851 [TBL] [Abstract][Full Text] [Related]
2. 'Neurosecretion' by synaptic terminals in the locust corpus cardiacum: is non-synaptic exocytosis part of the regulated or the constitutive pathway? Golding DW; Pow DV Biol Cell; 1991; 73(2-3):157-62. PubMed ID: 1804507 [TBL] [Abstract][Full Text] [Related]
3. 'Neurosecretion' by synaptic terminals and glandular discharge in the endocrine pancreas. Application of tannic acid to the teleost Xiphophorus helleri. Golding DW; Pow DV Neuroendocrinology; 1990 Apr; 51(4):369-75. PubMed ID: 2111885 [TBL] [Abstract][Full Text] [Related]
4. Exocytosis by synaptic terminals innervating the adrenal gland of the goldfish reveals multiple domains within the plasmalemma. Golding DW Proc Biol Sci; 1992 Mar; 247(1320):175-81. PubMed ID: 1350097 [TBL] [Abstract][Full Text] [Related]
5. Presence of T-bars, intramembranous particle arrays and exocytotic profiles in neuroendocrine terminals of an insect. Binnington KC; Lane NJ Tissue Cell; 1982; 14(3):463-74. PubMed ID: 7147225 [TBL] [Abstract][Full Text] [Related]
6. Neuropeptide Y-like immunoreactivity in neurons of the solitary tract nuclei: vesicular localization and synaptic input from GABAergic terminals. Pickel VM; Chan J; Massari VJ Brain Res; 1989 Jan; 476(2):265-78. PubMed ID: 2702468 [TBL] [Abstract][Full Text] [Related]
7. Quantitative ultrastructural tannic acid study of the relationship between electrical activity and peptide secretion by the bag cell neurons of Aplysia californica. Roubos EW; van de Ven AM; ter Maat A Neurosci Lett; 1990 Mar; 111(1-2):1-6. PubMed ID: 2336175 [TBL] [Abstract][Full Text] [Related]
8. 'Neurosecretion' by a classic cholinergic innervation apparatus. A comparative study of adrenal chromaffin glands in four vertebrate species (teleosts, anurans, mammals). Golding DW; Pow DV Cell Tissue Res; 1987 Aug; 249(2):421-5. PubMed ID: 3497722 [TBL] [Abstract][Full Text] [Related]
9. Effects of isolation and transplantation of the corpus cardiacum on hormone release from its glandular cells after flight in Locusta migratoria. A quantitative electron microscopical study. Rademakers LH Cell Tissue Res; 1977 Oct; 184(2):213-24. PubMed ID: 922870 [TBL] [Abstract][Full Text] [Related]
10. GABA and glutamate-like immunoreactivity at synapses received by dorsal unpaired median neurones in the abdominal nerve cord of the locust. Pflüger HJ; Watson AH Cell Tissue Res; 1995 May; 280(2):325-33. PubMed ID: 7781030 [TBL] [Abstract][Full Text] [Related]
11. The adipokinetic cells in the corpus cardiacum of Locusta migratoria preferentially release young secretory granules. Sharp-Baker HE; Diederen JH; Mäkel KM; Peute J; van der Horst DJ Eur J Cell Biol; 1995 Nov; 68(3):268-74. PubMed ID: 8603679 [TBL] [Abstract][Full Text] [Related]
12. Changes in the secretory activity of the glandular lobe of the corpus cardiacum of Locusta migratoria induced by flight. A quantitative electron microscopic study. Rademakers LH; Beenakkers AM Cell Tissue Res; 1977 May; 180(2):155-71. PubMed ID: 872191 [TBL] [Abstract][Full Text] [Related]
13. Membrane retrieval by vacuoles after exocytosis in the neural lobe of Brattleboro rats. Morris JF; Nordmann JJ Neuroscience; 1982 Jul; 7(7):1631-9. PubMed ID: 7121829 [TBL] [Abstract][Full Text] [Related]
14. Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Zhu PC; Thureson-Klein A; Klein RL Neuroscience; 1986 Sep; 19(1):43-54. PubMed ID: 2431353 [TBL] [Abstract][Full Text] [Related]
15. Ultrastructural demonstration of nonsynaptic release sites in the central nervous system of the snail Lymnaea stagnalis, the insect Periplaneta americana, and the rat. Buma P; Roubos EW Neuroscience; 1986 Mar; 17(3):867-79. PubMed ID: 3703256 [TBL] [Abstract][Full Text] [Related]
16. A pattern confirmed and refined--synaptic, nonsynaptic and parasynaptic exocytosis. Golding DW Bioessays; 1994 Jul; 16(7):503-8. PubMed ID: 7945279 [TBL] [Abstract][Full Text] [Related]
17. Exocytosis from large dense cored vesicles as a mechanism for neuropeptide release in the peripheral and central nervous system. Thureson-Klein A; Klein RL; Zhu PC Scan Electron Microsc; 1986; (Pt 1):179-87. PubMed ID: 3755544 [TBL] [Abstract][Full Text] [Related]
18. Zinc-iodide-osmium procedures as markers of subcellular structures. I. Standardization of staining of transmitter containing vesicles. Rodríguez EM; Giménez AR Z Mikrosk Anat Forsch; 1981; 95(2):257-75. PubMed ID: 6169217 [TBL] [Abstract][Full Text] [Related]
19. Capturing and quantifying the exocytotic event. Morris JF; Pow DV J Exp Biol; 1988 Sep; 139():81-103. PubMed ID: 3062123 [TBL] [Abstract][Full Text] [Related]
20. Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings. Giovannucci DR; Stuenkel EL J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):735-51. PubMed ID: 9051585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]