These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 36838526)
1. The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism. Kumar H; Khosraneh M; Bandaru SSM; Schulzke C; Leimkühler S Molecules; 2023 Feb; 28(4):. PubMed ID: 36838526 [TBL] [Abstract][Full Text] [Related]
2. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions. Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466 [TBL] [Abstract][Full Text] [Related]
3. Metal-Containing Formate Dehydrogenases, a Personal View. Leimkühler S Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211 [TBL] [Abstract][Full Text] [Related]
4. Formate Dehydrogenase Mimics as Catalysts for Carbon Dioxide Reduction. Fogeron T; Li Y; Fontecave M Molecules; 2022 Sep; 27(18):. PubMed ID: 36144724 [TBL] [Abstract][Full Text] [Related]
5. Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Khangulov SV; Gladyshev VN; Dismukes GC; Stadtman TC Biochemistry; 1998 Mar; 37(10):3518-28. PubMed ID: 9521673 [TBL] [Abstract][Full Text] [Related]
7. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. Hartmann T; Leimkühler S FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888 [TBL] [Abstract][Full Text] [Related]
8. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase. Robinson WE; Bassegoda A; Reisner E; Hirst J J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of formate oxidation by metal-dependent formate dehydrogenases. Mota CS; Rivas MG; Brondino CD; Moura I; Moura JJ; González PJ; Cerqueira NM J Biol Inorg Chem; 2011 Dec; 16(8):1255-68. PubMed ID: 21773834 [TBL] [Abstract][Full Text] [Related]
10. Reductive activation of CO Niks D; Hille R Methods Enzymol; 2018; 613():277-295. PubMed ID: 30509470 [TBL] [Abstract][Full Text] [Related]
11. Energetics for CO Siegbahn PEM J Phys Chem B; 2022 Mar; 126(8):1728-1733. PubMed ID: 35192765 [TBL] [Abstract][Full Text] [Related]
12. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. Bassegoda A; Madden C; Wakerley DW; Reisner E; Hirst J J Am Chem Soc; 2014 Nov; 136(44):15473-6. PubMed ID: 25325406 [TBL] [Abstract][Full Text] [Related]
13. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase. Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568 [TBL] [Abstract][Full Text] [Related]
14. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase. Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821 [TBL] [Abstract][Full Text] [Related]
15. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus. Schrapers P; Hartmann T; Kositzki R; Dau H; Reschke S; Schulzke C; Leimkühler S; Haumann M Inorg Chem; 2015 Apr; 54(7):3260-71. PubMed ID: 25803130 [TBL] [Abstract][Full Text] [Related]
16. Reaction mechanism of formate dehydrogenase studied by computational methods. Dong G; Ryde U J Biol Inorg Chem; 2018 Dec; 23(8):1243-1254. PubMed ID: 30173398 [TBL] [Abstract][Full Text] [Related]
17. Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase. Vilela-Alves G; Rebelo Manuel R; Pedrosa N; Cardoso Pereira IA; Romão MJ; Mota C Acta Crystallogr F Struct Biol Commun; 2024 May; 80(Pt 5):98-106. PubMed ID: 38699971 [TBL] [Abstract][Full Text] [Related]
18. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703 [TBL] [Abstract][Full Text] [Related]
19. Tracking W-Formate Dehydrogenase Structural Changes During Catalysis and Enzyme Reoxidation. Vilela-Alves G; Manuel RR; Oliveira AR; Pereira IC; Romão MJ; Mota C Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613918 [TBL] [Abstract][Full Text] [Related]
20. Formate Dehydrogenases Reduce CO Meneghello M; Oliveira AR; Jacq-Bailly A; Pereira IAC; Léger C; Fourmond V Angew Chem Int Ed Engl; 2021 Apr; 60(18):9964-9967. PubMed ID: 33599383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]