BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36838679)

  • 1. Study on the Influence of the Preparation Method of Konjac Glucomannan-Silica Aerogels on the Microstructure, Thermal Insulation, and Flame-Retardant Properties.
    Kuang Y; Liu P; Yang Y; Wang X; Liu M; Wang W; Guo T; Xiao M; Chen K; Jiang F; Li C
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Konjac glucomannan-based aerogels with excellent thermal stability and flame retardancy for thermal insulation application.
    Deng P; Liu X; Li Y; Zhang YF; Wu K; Jiang F
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127814. PubMed ID: 37918590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guar-based aerogels with oriented lamellar structure and lightweight properties for flame-retardant and thermal insulation.
    Sun J; Guo J; Li Y; Guan F; Zhang Y; Li Z
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128318. PubMed ID: 38000610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polysiloxane Bonded Silica Aerogel with Enhanced Thermal Insulation and Strength.
    Wang W; Tong Z; Li R; Su D; Ji H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing the Flexibility of Lightweight Cellulose Nanofiber Composite Aerogels for Superior Thermal Insulation and Fire Protection.
    Bhardwaj S; Singh S; Dev K; Chhajed M; Maji PK
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):18075-18089. PubMed ID: 38560888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated Microporous Polymer Aerogels Encapsulated within Hydroxyapatite Nanowires Exhibit Good Thermal Insulation and Flame-Retardant Properties.
    Chen Y; Zhu Z; Li M; Zhang J; Cao X; Fu R; Xing G; Sun H; Li J; Li A
    Langmuir; 2024 Jun; ():. PubMed ID: 38920388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation.
    Yang L; Zhang H; Wang C; Jiao Y; Pang X; Xu J; Ma H
    J Colloid Interface Sci; 2024 Jun; 672():618-630. PubMed ID: 38861849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow glass microspheres embedded in porous network of chitosan aerogel used for thermal insulation and flame retardant materials.
    Wang P; He B; An Z; Xiao W; Song X; Yan K; Zhang J
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128329. PubMed ID: 38000605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of N- and P- elements in sodium alginate aerogels for efficient flame retardant and thermal insulating properties.
    Zhan H; Liu J; Wang P; Wang C; Wang Z; Chen M; Zhu X; Fu B
    Int J Biol Macromol; 2024 May; 273(Pt 2):132643. PubMed ID: 38823751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoclay-reinforced alginate aerogels: preparation and properties.
    Xu BT; Jin DZ; Yu Y; Zhang Q; Weng WJ; Ren KX; Tai YL
    RSC Adv; 2024 Jan; 14(2):954-962. PubMed ID: 38174253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems.
    Yang Q; Feng S; Guo J; Guan F; Zhang S; Sun J; Zhang Y; Xu Y; Zhang X; Bao D; He J
    Int J Biol Macromol; 2024 Jun; ():133367. PubMed ID: 38945720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor.
    Liu Y; Cheng F; Li K; Yao J; Li X; Xia Y
    Carbohydr Polym; 2024 Mar; 328():121730. PubMed ID: 38220348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Top-Down Approach to the Fabrication of Flame-Retardant Wood Aerogel with In Situ-Synthesized Borax and Zinc Borate.
    Lin M; Guo X; Xu Y; Zhang X; Hu D
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable lignocellulose aerogel for air purifier with thermal insulation, flame retardancy, mechanical strength, and its life cycle assessment.
    Sun X; Yu Q; Wang F; Hu S; Zhou J; Liu Y; Jiang Z; Wang X; Yu Y; Yang H; Wang C
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128599. PubMed ID: 38056738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seaweed-Derived Alginate-Cellulose Nanofiber Aerogel for Insulation Applications.
    Berglund L; Nissilä T; Sivaraman D; Komulainen S; Telkki VV; Oksman K
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34899-34909. PubMed ID: 34255967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Fragile to Resilient Insulation: Synthesis and Characterization of Aramid-Honeycomb Reinforced Silica Aerogel Composite Materials.
    Schwan M; Rößler M; Milow B; Ratke L
    Gels; 2015 Dec; 2(1):. PubMed ID: 30674133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid.
    Zhu J; Wang Y; Zhao X; Li N; Guo X; Zhao L; Yin Y
    Int J Biol Macromol; 2024 May; 267(Pt 1):131450. PubMed ID: 38588838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review.
    Zhang X; Yu J; Zhao C; Si Y
    Small; 2024 Mar; ():e2311464. PubMed ID: 38511588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Reinforced Fibers and Opacifiers on the Effective Thermal Conductivity of Silica Aerogels.
    Huang B; Li J; Gong L; Dai P; Zhu C
    Gels; 2024 Apr; 10(5):. PubMed ID: 38786217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic-physical-chemical triple cross-linked all-biomass-based aerogel for thermal insulation applications.
    An X; Ma C; Gong L; Liu C; Li N; Liu Z; Li X
    J Colloid Interface Sci; 2024 Aug; 668():678-690. PubMed ID: 38710124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.