These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36838679)

  • 61. Konjac Glucomannan Aerogels Modified by Hydrophilic Isocyanate and Expandable Graphite with Excellent Hydrolysis Resistance, Mechanical Strength, and Flame Retardancy.
    Wang L; Lin X; Li J; Yang H; Feng X; Wan C
    Biomacromolecules; 2023 Jun; 24(6):2816-2827. PubMed ID: 37141322
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels.
    Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regeneration mechanism of a novel high-performance biochar mercury adsorbent directionally modified by multimetal multilayer loading.
    Jia L; Cheng P; Yu Y; Chen SH; Wang CX; He L; Nie HT; Wang JC; Zhang JC; Fan BG; Jin Y
    J Environ Manage; 2023 Jan; 326(Pt B):116790. PubMed ID: 36399809
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ecofriendly flame-retardant composite aerogel derived from polysaccharide: Preparation, flammability, thermal kinetics, and mechanism.
    He H; Wang Y; Yu Z; Liu J; Zhao Y; Ke Y
    Carbohydr Polym; 2021 Oct; 269():118291. PubMed ID: 34294317
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels.
    Kuang Y; Chen L; Zhai J; Zhao S; Xiao Q; Wu K; Qiao D; Jiang F
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466715
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Research in porous structure of cellulose aerogel made from cellulose nanofibrils.
    Gong C; Ni JP; Tian C; Su ZH
    Int J Biol Macromol; 2021 Mar; 172():573-579. PubMed ID: 33454335
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions.
    Wu K; Fang Y; Wu H; Wan Y; Qian H; Jiang F; Chen S
    Int J Biol Macromol; 2021 Jan; 166():1499-1507. PubMed ID: 33181223
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel.
    Dilamian M; Noroozi B
    Carbohydr Polym; 2021 Jan; 251():117016. PubMed ID: 33142577
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks.
    Dhand AP; Galarraga JH; Burdick JA
    Trends Biotechnol; 2021 May; 39(5):519-538. PubMed ID: 32950262
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
    De France K; Zeng Z; Wu T; Nyström G
    Adv Mater; 2021 Jul; 33(28):e2000657. PubMed ID: 32267033
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties.
    Zhu J; Hu J; Jiang C; Liu S; Li Y
    Carbohydr Polym; 2019 Mar; 207():246-255. PubMed ID: 30600006
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw.
    Wang Y; Wu K; Xiao M; Riffat SB; Su Y; Jiang F
    Carbohydr Polym; 2018 Oct; 197():284-291. PubMed ID: 30007615
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modifications of konjac glucomannan for diverse applications.
    Zhu F
    Food Chem; 2018 Aug; 256():419-426. PubMed ID: 29606469
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A review of bio-based materials for oil spill treatment.
    Doshi B; Sillanpää M; Kalliola S
    Water Res; 2018 May; 135():262-277. PubMed ID: 29477791
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery.
    He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R
    J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Preparation of cationic konjac glucomannan in NaOH/urea aqueous solution.
    Wang K; Gao S; Shen C; Liu J; Li S; Chen J; Ren X; Yuan Y
    Carbohydr Polym; 2018 Feb; 181():736-743. PubMed ID: 29254030
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications.
    Zuo L; Zhang Y; Zhang L; Miao YE; Fan W; Liu T
    Materials (Basel); 2015 Oct; 8(10):6806-6848. PubMed ID: 28793602
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural characterization and properties of konjac glucomannan and zein blend films.
    Wang K; Wu K; Xiao M; Kuang Y; Corke H; Ni X; Jiang F
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):1096-1104. PubMed ID: 28739406
    [TBL] [Abstract][Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.