BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36839009)

  • 1. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics, Electronic Properties of Filled Carbon Nanotubes Investigated with Spectroscopy for Applications.
    Kharlamova MV
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallocene-Filled Single-Walled Carbon Nanotube Hybrids.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotube Functionalization: Investigation, Methods and Demonstrated Applications.
    Kharlamova MV; Paukov M; Burdanova MG
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic liquid for in situ Vis/NIR and Raman spectroelectrochemistry: Doping of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2003 Sep; 4(9):944-50. PubMed ID: 14562439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors.
    Iglesias D; Senokos E; Alemán B; Cabana L; Navío C; Marcilla R; Prato M; Vilatela JJ; Marchesan S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5760-5770. PubMed ID: 29302960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen doping in carbon nanotubes.
    Ewels CP; Glerup M
    J Nanosci Nanotechnol; 2005 Sep; 5(9):1345-63. PubMed ID: 16193950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically functionalized carbon nanotubes and their application to rechargeable lithium batteries.
    Baibarac M; Lira-Cantú M; Oró-Solé J; Casañ-Pastor N; Gomez-Romero P
    Small; 2006 Aug; 2(8-9):1075-82. PubMed ID: 17193171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.
    Frank O; Dresselhaus MS; Kalbac M
    Acc Chem Res; 2015 Jan; 48(1):111-8. PubMed ID: 25569178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic Liquid Gated Carbon Nanotube Saturable Absorber for Switchable Pulse Generation.
    Gladush Y; Mkrtchyan AA; Kopylova DS; Ivanenko A; Nyushkov B; Kobtsev S; Kokhanovskiy A; Khegai A; Melkumov M; Burdanova M; Staniforth M; Lloyd-Hughes J; Nasibulin AG
    Nano Lett; 2019 Sep; 19(9):5836-5843. PubMed ID: 31343179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles.
    He P; Bayachou M
    Langmuir; 2005 Jun; 21(13):6086-92. PubMed ID: 15952864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.
    Sivakumar K; Panchapakesan B
    J Nanosci Nanotechnol; 2005 Feb; 5(2):313-8. PubMed ID: 15853154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of Chemical Dopants in Simulated Resonance Raman Spectroscopy of Carbon Nanotubes.
    Weight BM; Zheng M; Tretiak S
    J Phys Chem Lett; 2023 Feb; 14(5):1182-1191. PubMed ID: 36715511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.
    Guadarrama-Fernández L; Chanona-Pérez J; Manzo-Robledo A; Calderón-Domínguez G; Martínez-Rivas A; Ortiz-López J; Vargas-García JR
    Microsc Microanal; 2014 Oct; 20(5):1479-85. PubMed ID: 25156941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical functionalization of carbon nanotubes.
    Sinnott SB
    J Nanosci Nanotechnol; 2002 Apr; 2(2):113-23. PubMed ID: 12908295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant.
    Ingrosso C; Bianco GV; Lopalco P; Tamborra M; Curri ML; Corcelli A; Bruno G; Agostiano A; Siciliano P; Striccoli M
    Nanoscale; 2012 Oct; 4(20):6434-41. PubMed ID: 22961248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of KI encapsulation in single-walled carbon nanotubes by Raman and optical absorption spectroscopy.
    Ilie A; Bendall JS; Roy D; Philp E; Green ML
    J Phys Chem B; 2006 Jul; 110(28):13848-57. PubMed ID: 16836333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.