These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36839044)

  • 1. Electronic and Spintronic Properties of Armchair MoSi
    Su XQ; Wang XF
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.
    Kumar J; Nemade HB; Giri PK
    Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-metal doping induces the transition of electronic and magnetic properties in armchair MoS
    Pan J; Wang R; Zhou X; Zhong J; Xu X; Hu J
    Phys Chem Chem Phys; 2017 Sep; 19(36):24594-24604. PubMed ID: 28853458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons.
    Liu ZM; Zhu Y; Yang ZQ
    J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 3d transition-metal doping on electronic and magnetic properties of MoSâ‚‚ nanoribbons.
    Tian X; Liu L; Du Y; Gu J; Xu JB; Yakobson BI
    Phys Chem Chem Phys; 2015 Jan; 17(3):1831-6. PubMed ID: 25474629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magneto-electronics, transport properties, and tuning effects of arsenene armchair nanotubes doped with transition metal atoms.
    Han JN; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2020 Jul; 31(31):315206. PubMed ID: 32299069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices.
    Wan H; Xiao X; Ang YS
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferromagnetic half-metal with high Curie temperature in Cr P nanoribbons: good material for spintronic applications.
    Movlarooy T; Vatankhahan A
    Phys Chem Chem Phys; 2023 Sep; 25(35):24155-24162. PubMed ID: 37655592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain robust spin gapless semiconductors/half-metals in transition metal embedded MoSe
    Yang Q; Kou L; Hu X; Wang Y; Lu C; Krasheninnikov AV; Sun L
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32369800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study.
    Chen T; Guo C; Xu L; Li Q; Luo K; Liu D; Wang L; Long M
    Phys Chem Chem Phys; 2018 Feb; 20(8):5726-5733. PubMed ID: 29411795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons.
    Zou F; Zhu L; Yao K
    Sci Rep; 2015 Oct; 5():15966. PubMed ID: 26514646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitutional transition metal doping in MoSi
    Abdelati MA; Maarouf AA; Fadlallah MM
    Phys Chem Chem Phys; 2022 Feb; 24(5):3035-3042. PubMed ID: 35040465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Armchair MoS
    Lee CH; Lin J; Yang CK
    Sci Rep; 2018 Sep; 8(1):13307. PubMed ID: 30190601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable magnetic and electronic properties of armchair BeN
    Zhu M; Zhou W; Yang J; Zhou J; Li Q
    Phys Chem Chem Phys; 2023 Feb; 25(6):5029-5036. PubMed ID: 36722879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structures of WS
    Chen YH; Lee CH; Cheng SJ; Yang CK
    Sci Rep; 2020 Oct; 10(1):16452. PubMed ID: 33020539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.