These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36839064)

  • 1. Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons.
    Huang CH; Wu CH; Bikbaev RG; Ye MJ; Chen CW; Wang TJ; Timofeev IV; Lee W; Chen KP
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Optical Fiber Refractive Index Sensor Based on the Hybrid Mode of Tamm and Surface Plasmon Polaritons.
    Zhang X; Zhu XS; Shi YW
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the potential of broadband Tamm plasmon resonance for enhanced photodetection.
    Poddar K; Sinha R; Jana B; Chatterjee S; Mukherjee R; Maity AR; Kumar S; Maji PS
    Appl Opt; 2023 Oct; 62(30):8190-8196. PubMed ID: 38038117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tamm plasmon polariton-based planar hot-electron photodetector for the near-infrared region.
    Konov YV; Pykhtin DA; Bikbaev RG; Timofeev IV
    Nanoscale; 2024 May; 16(19):9570-9575. PubMed ID: 38669098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon.
    Wang Z; Clark JK; Ho YL; Delaunay JJ
    Nanoscale; 2019 Sep; 11(37):17407-17414. PubMed ID: 31528935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral-Selective Tamm Plasmon Polaritons.
    Lin MY; Xu WH; Bikbaev RG; Yang JH; Li CR; Timofeev IV; Lee W; Chen KP
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity.
    Zhang K; Liu Y; Xia F; Li S; Kong W
    Opt Lett; 2020 Jul; 45(13):3669-3672. PubMed ID: 32630926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons.
    Liang W; Xiao Z; Xu H; Deng H; Li H; Chen W; Liu Z; Long Y
    Opt Express; 2020 Oct; 28(21):31330-31344. PubMed ID: 33115108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the graphene layer on the strong coupling in the hybrid Tamm-plasmon polariton mode.
    Buzavaite-Verteliene E; Valavicius A; Grineviciute L; Tolenis T; Lukose R; Niaura G; Balevicius Z
    Opt Express; 2020 Mar; 28(7):10308-10319. PubMed ID: 32225618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Plasmon Polariton Graphene Photodetectors.
    Echtermeyer TJ; Milana S; Sassi U; Eiden A; Wu M; Lidorikis E; Ferrari AC
    Nano Lett; 2016 Jan; 16(1):8-20. PubMed ID: 26666842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional Dirac plasmon-polaritons in graphene, 3D topological insulator and hybrid systems.
    In C; Kim UJ; Choi H
    Light Sci Appl; 2022 Oct; 11(1):313. PubMed ID: 36302746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gyroidal graphene/porous silicon array for exciting optical Tamm state as optical sensor.
    Zaky ZA; Aly AH
    Sci Rep; 2021 Sep; 11(1):19389. PubMed ID: 34588484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.
    Das R; Srivastava T; Jha R
    Opt Lett; 2014 Feb; 39(4):896-9. PubMed ID: 24562235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes.
    Qiao T; Hu M; Wang Q; Xiao M; Zhu S; Liu H
    Opt Express; 2024 Jun; 32(12):21497-21505. PubMed ID: 38859502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface.
    Liu C; Kong M; Li B
    Opt Express; 2014 May; 22(9):11376-83. PubMed ID: 24921834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field manipulation of Tamm plasmon polaritons.
    Li N; Zou Q; Zhao B; Min C; Yuan X; Somekh M; Feng F
    Opt Express; 2023 Feb; 31(5):7321-7335. PubMed ID: 36859866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Tamm plasmon cavity as a scalable biosensing platform for surface enhanced resonance Raman spectroscopy.
    Sreekanth KV; Perumal J; Dinish US; Prabhathan P; Liu Y; Singh R; Olivo M; Teng J
    Nat Commun; 2023 Nov; 14(1):7085. PubMed ID: 37925522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.