These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36839081)

  • 1. Seed-Mediated Synthesis of Thin Gold Nanoplates with Tunable Edge Lengths and Optical Properties.
    Qiao Z; Wei X; Liu H; Liu K; Gao C
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing.
    Beeram SR; Zamborini FP
    ACS Nano; 2010 Jul; 4(7):3633-46. PubMed ID: 20575510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application.
    Ha Pham TT; Vu XH; Dien ND; Trang TT; Van Truong N; Thanh TD; Tan PM; Ca NX
    RSC Adv; 2020 Jun; 10(41):24577-24594. PubMed ID: 35516184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering.
    Wei X; Fan Q; Liu H; Bai Y; Zhang L; Zheng H; Yin Y; Gao C
    Nanoscale; 2016 Aug; 8(34):15689-95. PubMed ID: 27524663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Mismatch-Induced Formation of Copper Nanoplates with Embedded Ultrasmall Platinum or Palladium Cores for Tunable Optical Properties.
    Qiao Z; Yang H; Fan Q; Liu Z; Liu K; Wen Z; Wang Z; Cheng T; Gao C
    Small; 2023 Apr; 19(15):e2206838. PubMed ID: 36599628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable LSPR of silver/gold bimetallic nanoframes and their SERS activity for methyl red detection.
    Vu XH; Dien ND; Ha Pham TT; Van Truong N; Ca NX; Van Thu V
    RSC Adv; 2021 Apr; 11(24):14596-14606. PubMed ID: 35423967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of positively charge poly-L-lysine in the formation of high yield gold nanoplates on the surface for plasmonic sensing application.
    Morsin M; Nafisah S; Sanudin R; Razali NL; Mahmud F; Soon CF
    PLoS One; 2021; 16(11):e0259730. PubMed ID: 34748606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Step Synthesis of Tunable-Size Gold Nanoplates on Graphene Multilayers.
    Xin W; Severino J; De Rosa IM; Yu D; Mckay J; Ye P; Yin X; Yang JM; Carlson L; Kodambaka S
    Nano Lett; 2018 Mar; 18(3):1875-1881. PubMed ID: 29406754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying.
    Wan D; Xia X; Wang Y; Xia Y
    Small; 2013 Sep; 9(18):3111-7. PubMed ID: 23457090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Pot Self-Templated Growth of Gold Nanoframes for Enhanced Surface-Enhanced Raman Scattering Performance.
    Ye P; Xin W; De Rosa IM; Wang Y; Goorsky MS; Zheng L; Yin X; Xie YH
    ACS Appl Mater Interfaces; 2020 May; 12(19):22050-22057. PubMed ID: 32266808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor.
    Morsin M; Mat Salleh M; Ali Umar A; Sahdan MZ
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28441323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide-Supported Ag Nanoplates as LSPR Tunable and Reproducible Substrates for SERS Applications with Optimized Sensitivity.
    Hou H; Wang P; Zhang J; Li C; Jin Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18038-45. PubMed ID: 26203672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy.
    Zhu J; Wang Y; Huo D; Ding Q; Lu Z; Hu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110023. PubMed ID: 31546371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap.
    Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118343. PubMed ID: 32302959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of mercury(II) ion based on DNA-assisted amalgamation: a comparison study on gold, silver and Ag@Au Nanoplates.
    Zhang Y; Zhang L; Wang L; Wang G; Komiyama M; Liang X
    Mikrochim Acta; 2019 Oct; 186(11):713. PubMed ID: 31650278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands.
    Zhang Q; Hu Y; Guo S; Goebl J; Yin Y
    Nano Lett; 2010 Dec; 10(12):5037-42. PubMed ID: 21038884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.
    Ma Y; Li W; Cho EC; Li Z; Yu T; Zeng J; Xie Z; Xia Y
    ACS Nano; 2010 Nov; 4(11):6725-34. PubMed ID: 20964400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Optical Properties of Cubic Gold Nanoframes.
    Au L; Chen Y; Zhou F; Camargo PH; Lim B; Li ZY; Ginger DS; Xia Y
    Nano Res; 2008 Dec; 1(6):441-449. PubMed ID: 20200595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed-Mediated Growth of Ag@Au Nanodisks with Improved Chemical Stability and Surface-Enhanced Raman Scattering.
    Krishnan SK; Esparza R; Flores-Ruiz FJ; Padilla-Ortega E; Luna-Bárcenas G; Sanchez IC; Pal U
    ACS Omega; 2018 Oct; 3(10):12600-12608. PubMed ID: 31457992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.